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SUMMARY: In this work, a new stock assessment method, Direct Survival Analysis, is proposed and described. The param-
eter estimation of the Weibull survival model proposed by Ferrandis (2007) is obtained using trawl survey data. This esti-
mation is used to establish a baseline survival function, which is in turn used to estimate the specific survival functions in
the different cohorts considered through an adaptation of the separable model of the fishing mortality rates introduced by
Pope and Shepherd (1982). It is thus possible to test hypotheses on the evolution of survival during the period studied and
to identify trends in recruitment. A link is established between the preceding analysis of trawl survey data and the commer-
cial catch-at-age data that are generally obtained to evaluate the population using analytical models. The estimated baseline
survival, with the proposed versions of the stock and catch equations and the adaptation of the Separable Model, may be
applied to commercial catch-at-age data. This makes it possible to estimate the survival corresponding to the landing data,
the initial size of the cohort and finally, an effective age of first capture, in order to complete the parameter model estima-
tion and consequently the estimation of the whole survival and mortality, along with the reference parameters that are use-
ful for management purposes. Alternatively, this estimation of an effective age of first capture may be obtained by adapting
the demographic structure of trawl survey data to that of the commercial fleet through suitable selectivity models of the com-
mercial gears. The complete model provides the evaluation of the stock at any age. The coherence (and hence the mutual
“calibration”) between the two kinds of information may be analysed and compared with results obtained by other methods,
such as virtual population analysis (VPA), in order to improve the diagnosis of the state of exploitation of the population.
The model may be drawn up in a deterministic format, but the main concepts may be interpreted as expectations if stock and
catch are considered as stochastic processes.
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RESUMEN: ANÁLISIS DIRECTO DE SUPERVIVENCIA: UN NUEVO MÉTODO DE EVALUACIÓN DE STOCKS. – En el presente trabajo se
propone y elabora un nuevo método para la evaluación de poblaciones marinas: DSA, o análisis directo de supervivencia.
Utilizando datos proporcionados por las campañas de prospección de arrastre, se obtiene la estimación de los parámetros del
modelo de supervivencia de Weibull propuesto por Ferrandis (2007) en un trabajo precedente. Dicha estimación permite esta-
blecer una función global de supervivencia y, a partir de ella, la supervivencia relativa a las distintas cohortes consideradas en
el período de estudio a través de una adaptación del modelo separable de la mortalidad por pesca introducido por Pope y
Shepherd. Y ello permite contrastar hipótesis acerca de la evolución de la supervivencia durante el período así como identifi-
car posibles tendencias en el reclutamiento. Se establece un nexo entre este análisis de los datos procedentes de campañas de
prospección directa y los datos procedentes de las capturas comerciales estructurados por edades, generalmente obtenidos para
la evaluación de la población por métodos analíticos. Ello permite la estimación de la supervivencia correspondiente a las cap-
turas comerciales, el tamaño inicial de la cohorte y la edad efectiva de primera captura. Lo que completa la estimación de pará-
metros relativos a la mortalidad y supervivencia y los parámetros de referencia utilizados en la gestión de recursos marinos
explotados. Esta estimación de una edad efectiva de primera captura puede obtenerse, alternativamente, relacionando la estruc-
tura demográfica proporcionada por las campañas de prospección de arrastre con la relativa a la flota comercial a través de
modelos adecuados de la  selectividad de las artes utilizadas por la flota comercial. El modelo proporciona la estimación del
stock a cualquier edad de la cohorte. Y la coherencia (por tanto, la mutua calibración) entre las dos fuentes de información
puede ser descrita y analizada, así como la comparación de los resultados con los obtenidos por otros métodos (VPA), para
profundizar en el diagnóstico acerca del estado de explotación de la población. La elaboración del modelo puede establecer-
se en un enfoque determinista. Pero todos sus conceptos pueden ser interpretados como valores esperados si el stock y la cap-
tura se consideran como procesos estocásticos en la línea desarrollada por Ferrandis (2007).

Palabras clave: dinámica de poblaciones marinas, evaluación de stocks, análisis de supervivencia, modelos de mortalidad.



INTRODUCTION

Results produced by trawl surveys have often
been criticised on the grounds of their lack of
robustness based on their high variability. However,
the experimental data relative to size and ages of
some important target species in the Spanish
Mediterranean have shown an excellent statistical
behaviour in comparison with the proposed proba-
bilistic models. This reinforces the capabilities of
trawl surveys as fundamental sources of information
for the management of marine resources.

The present work describes new approaches and
models for interpreting the global evolution of the
mortality and survival of an exploited marine
resource. The modelling of survival allows a bridge
to be built between the two classical and often con-
flicting methods: direct and indirect evaluation.

In this first extension of the classical models, the
scenario is restricted to the assumption of a constant
exploitation rate from the age of first capture that is
coherent with mixed Weibull models for lifetime
distribution. 

In the Weibull model proposed in this work, four
parameters are used to establish the mortality
throughout the entire life of the exploited resource:
the mortality coefficients, M and Z, of the natural and
total mortality rates respectively, the exponent α (the
shape of the lifetime distribution) and the effective
age of first capture, tc. In this work, the authors do not
impose artificial conditions on either the age (whose
range is [0, ∞)) or the stock (which is finite and
bounded, even for age 0), nor do they use an assumed
terminal fishing mortality rate or the mortality model
to produce a mortality vector. On the contrary, we
demonstrate that one can work directly with the
Continuous Survival Model. The name Direct
Survival Analysis is therefore not artificial at all. 

The authors emphasise the role of the Weibull
distribution in fishery science without expecting it to
be generally applicable. The only condition for its
use should be the goodness of fit with respect to the
empirical results. The Weibull distribution here
applied, is a natural extension of the generally
accepted exponential model underlying the classical
Virtual Population Analysis (Gulland, 1965) and its
further modifications (Separable VPA by Pope and
Shepherd, 1982, and XSA by Shepherd, 1991,
1999). It produces a natural adaptation of the stock
and catch equations that makes it possible to
“rewrite” the theory and computational tools of pop-

ulation dynamics in a relatively easy way, therefore,
understandable to all the fisheries scientist who are
familiar with widespread software such as FISAT
(Gayanilo and Pauly, 1997), VIT (Lleonart and Salat
1997), VPA Suite (Darby and Flatman, 1994). It also
provides an admissible model of mortality rate that
makes it possible to consider the stochastic charac-
ter of the survival, and hence, to incorporate the
likelihood methodology (which is strong when one
is dealing with large samples as is generally the case
in fishery applications) and the very powerful tools
of survival analysis developed in many biological
and epidemiological studies.

Thus, the present work not only provides a new
tool for evaluating exploited marine populations, but
further provides new approaches and perspectives to
marine population dynamics. 

Some initial steps of this promising method will
be presented in future applications recommended by
the recently created Permanent Working Group on
Stock Assessment Methodology (PWGAM) of the
General Fisheries Commission of the Mediterranean
(GFCM). 

1. ESTIMATING THE MODEL WITH TRAWL
SURVEY DATA

1.1. Trawl survey data and the proportional 
hazard survival model

The so-called “direct methods”, and in particular
trawl surveys, are evaluation procedures independ-
ent of the fishery activity and hence not affected by
the questionable trustworthiness and lack of coher-
ence of catch data provided by fleets and/or fishery
administrations belonging to different countries (or
even regions in the same country). On the contrary,
they allow a temporal coordination and standardiza-
tion of gears and sampling effort and methods
between different research vessels. They can thus be
used to establish historical series of coherent data
that are suitable for identifying spatio-temporal
trends and are very useful for both theoretical
research and management purposes. 

The assumed survival model has been proposed
by Ferrandis (2006) as a battery of Weibull distribu-
tions corresponding to the unexploited phase sub-
jected only to natural mortality (with a coefficient of
mortality M) and the exploited phase subjected to
total mortality (with a higher mortality coefficient
Z=M+F) from an age of first capture, tc:
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(1.1.1)

The exponent α is the main parameter related to
the shape of the mortality, so it is natural to assume
that this exponent is quite stable for a given species
and a given region. Therefore, it could be considered
as a population parameter. 

1.2. The growth equation

In general, surveys of marine resources provide
size-frequency distributions that may be converted
into age distributions through the inverse growth
equation if adequate estimations of its parameters
are available.

(1.2.1)

where l is the size at age t and t0, k, L∞ are the Von
Bertalanfy growth equation parameters. Otherwise,
the conversion from size to age may be performed if
a table of transition probabilities between size and
age classes is available. 

1.3. The identification of a representative age
interval (baseline interval)

Most of the demersal resources investigated in
trawl surveys are not fully recruited to the gear used
and/or to the trawled area. Because of this, for most
of the resources the youngest individuals are not
present in the capture, and older individuals are
often underrepresented in the sample. Therefore, it
is necessary to identify an age interval [t1,t2] for
which it can be assumed that the obtained sample is
representative of the population and which should
be contained in the exploited phase, that is to say, in
the second interval of ages considered by the
Weibull model (1.1.1). In the identification of this
baseline interval, the analysis of the age and size
distribution with the estimation of their first mode
and the knowledge of the size range caught by the
fishery fleet may be helpful.

Assuming that the equivalence of the demo-
graphic structure in the sampled baseline interval is
representative of the population is equivalent to

assuming that the mortality rate caused by the sur-
vey is proportional to the general mortality in that
interval (Cox, 1959) and also that, in this interval,
the catchability of the sample gear used in the sur-
vey should be independent of age. 

1.4. Estimation of the conditional survival in the
selected interval: the baseline survival

In the probabilistic framework presented by
Ferrandis (2006), the estimation of the survival
restricted to the baseline established interval may
be considered as a conditional probability (denoted
by “ |“)

(1.4.1)

This conditional survival, S(t|t1 ≤ T ≤t2), is esti-
mated by the empirical survival function, that is, the
quotient between the number of observed ages
greater than t and less than t2 and the total number of
observed ages in the baseline interval. This can be
expressed formally by: 

(1.4.2)

where n is the number of observed ages in the inter-
val [t1,t2] and I[t,t2] is the indicator function of the
interval [t,t2], defined, for any set A, by 

In general, this estimation will be obtained from the
historical series of trawl surveys data restricted to the
baseline interval and on a cohort basis: i.e. for the esti-
mation of this survival function a cohort, or a set of
cohorts, will be considered. Also, these estimations
will be obtained on a catch per unit effort basis because
the survey effort is not constant during the study peri-
od. This is easily done by weighting the frequency of
the ages by the particular and measured trawled area
(multiplying the frequency by the mean swept area and
dividing by the area swept on each trawl). 

However, if in this interval the sample is repre-
sentative of the population, the conditional survival
is related to the total survival in the following way:

(1.4.3)
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Dividing by the survival at the initial age of the
interval, S(t1)

(1.4.4)

and, according to the assumed model, the quotients
only depend on the two parameters Z and α. 

(1.4.5)

Then, the estimation of the parameters of the
model, Z and α, may be obtained from the estima-
tion of the conditional survival. This can be
achieved in two ways: by non-linear regression, tak-
ing the unit values as the seed, and alternatively and
complementarily by maximum likelihood. 

In fact, the density function corresponding to the
conditional survival is:

(1.4.6)

The log-likelihood is thus:

(1.4.7)
whose derivatives 

(1.4.8)

provide a system of two non-linear equations with
the two unknowns Z and α.

However, as is shown in the annex, an explicit
equation relates both parameters:

(1.4.9)

where

(1.4.10)

the sum being extended on all the observed ages in
the baseline interval. 

Hence, the system of equations (1.4.8) is reduced
to one non-linear equation with the single unknown
α, which can be solved computationally by the “reg-
ula falsi” method. (Hildebrand, 1974; Curtis, 1994).
The authors have developed suitable software to
obtain both the non-linear regression (least squares
estimation) and the maximum likelihood estimation
with a prefixed precision.

These parameter estimation methods provide an
estimate of the survival in the exploited phase,
which, in accordance with usual concepts in survival
analysis, will be called the estimated “baseline sur-
vival” (Smith, 2002).

Likewise, the estimation of the baseline survival
makes it possible to specify the natural mortality, as
described in Ferrandis (2006). For an assumed con-
stant natural mortality rate M0 and an estimated
exponent α�, the corresponding coefficient of natural
mortality is

(1.4.11)

1.5. Estimation of the survival in the different
cohorts

In order to specify the survival for each of the
cohorts considered from the general baseline sur-
vival, an adaptation of the Separable Model (Pope
and Shepherd, 1982) is proposed. The separability
hypothesis expresses the fishing mortality rates as a
product of age selection effects correlated with the
exploitation pattern and temporal effects correlated
with the intensity of exploitation. In this adaptation,
the temporal effects will be set as a cohort effect
which will become a year effect, when a pseudoco-
hort is considered.

Let 

Z0 = M + F (1.5.1)
be the mortality coefficient corresponding to the
baseline survival, which provides the mortality rate

(1.5.2)

and that corresponding to the i-th cohort

Zi = M + kiF (1.5.3)
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(1.5.4)

In this context, M(t) = Mαtα–1 is the natural mor-
tality rate, F(t) = Fαtα–1 the age selection effect of
the fishing mortality rate and ki the cohort effect.

With the following change of parameter 

(1.5.5)

the conditional survival for a specific cohort and
the baseline survival are related as:

(1.5.6)

and the mortality rates as

(1.5.7)

Hence, the separable model may be characterised
by the relation between the specific mortality rates
and the baseline mortality that corresponds to the
proportional hazard model (Smith, 2002) considered
in the Survival Analysis framework. The specific
survival of a particular cohort is a power of the base-
line survival.

As in the case of the baseline survival, the esti-
mation of the proportional parameter ki

* may be
obtained from the estimated conditional baseline
survivals in two ways: by non-linear regression, tak-
ing the unit value as the seed, and alternatively and
complementarily by maximum likelihood. The like-
lihood solution is 

(1.5.8)
where the sum is extended to the n ages of the cohort
considered in the selected baseline interval.

Again, this non linear equation with the single
unknown, ki

*, can be solved computationally by the
“regula falsi” method. (Hildebrand, 1974, Curtis,
1994). As with other required computing facilities,
the authors have developed adequate and specific
software to obtain the solution of (1.5.8).

1.6. Hypotheses on the evolution of survival

An increasing/decreasing trend on {ki
*} corre-

sponds to a decreasing/increasing trend on survival
{Si}. The hypothesis of a stable survival during the
period may be tested by likelihood ratio test:

(1.6.1)

L(S) being the likelihood corresponding to the base-
line survival and the whole data set of ages in the
baseline interval, and L(Si) the likelihood correspon-
ding to the i-th cohort. 

The statistic –2 ln(λ) follows asymptotically a chi-
squared distribution with (c-1) degrees of freedom,
χ2

(c-1), c being the number of cohorts considered. 

1.7. Identification of recruitment trends

Splitting the baseline interval into a partition of
subintervals {[ti,ti+1),i = 1...k} the catch equation
will provide the expected number of individuals
obtained in each subinterval of the cohort:

where the expected number of individuals at the ini-
tial age of the interval, E[N(ti)], is related to the
recruitment as:

where tr is the age at recruitment.
The particular coefficient of mortality of the

cohort and the survival of the cohort, by the propor-
tional hazard model, are

Z = ki
*Z0 and S = S0

k j
*

and the fishing mortality rate produced by the sur-
vey is 

where qh is the catchability coefficient and Ah is the
area swept on trawl h. The catchability coefficient will
be proportional to the corresponding accessibility.

If it can be assumed that the accessibility is sta-
ble in a geographical or bathymetric range, there
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will be a constant catchability, qh = q, in this range
and in the considered baseline age interval. 

Then, in general, the catch equation becomes 

(1.7.1)
Now, taking the set of observed catches

Y = {yi = C(ti,ti+1)}

as the dependent variable and

X = {xi} = 

(1.7.2)

as the independent variable, the catch equation pro-
vides a linear regression .

This is a regression without a constant term
whose regression coefficient, , will
be proportional to the recruitment of the cohort, that
is to say, it will constitute a recruitment index.
Therefore, the trends in these regression coefficients
reflect trends in the recruitment.

In order to evaluate expression (1.7.2), the inde-
pendent variable of the regression, an estimation of
the age of first capture, tc, is needed. This may be
obtained from the established management routines
of the fishery (such as the age corresponding to the
minimum permitted catch size) or from the estima-
tion of an effective age of first capture by adapting
the approach introduced by J. Shepherd (1983). This
estimation will be developed in detail in the next
paragraphs, which links the model with commercial
landing data. 

The significance of possible recruitment trends
can be tested by modelling the recruitment trends.
For instance, a linear trend during the period may be
formalised as R = a + bYc, R being the recruitment
and c the year of the cohort. Substituting this trend
in the expected catches (1.7.1), we have a multiple
linear regression of the catches as the dependent
variable over the two independent variables, X, and
the product, XYc as the second predictor. The expect-

ed catches (1.7.1) are then rewritten as

Therefore, the significance of the coefficient
of the predictor XYc implies the sig-

nificance of the parameter b of the considered linear
trend in recruitment. 

2. LINKING THE MODEL WITH 
COMMERCIAL LANDING DATA

2.1. Age structured commercial catch data

Commercial fleet catches provide biomass and
density data for different species. When this infor-
mation is complemented with biological samplings,
size classes can be transformed into age classes
which form the basis for the application of age-
structured stock assessment models. A data series of
successive years can be the source for a cohort
analysis. If the number of years is low, an alternative
is to analyse pseudo-cohorts (age structure of one-
year catches) as if they represented the evolution of
a cohort assuming equilibrium conditions. 

In general, the catch-at-age data will be consid-
ered as a set of age intervals {[ti–1,ti); i = 1,...,k} and
a corresponding set of catch in number {Ci; i =
1,...,k} for each age interval. In the most complete
case, the initial and final ages will be: t0 = 0 and 
tk = ∞.

2.2. Parameter estimation

We use the baseline survival already estimated
from trawl surveys, with parameters Z0 and α, in
order to estimate the survival functions that corre-
spond to the cohorts (or pseudo-cohorts) given by
commercial catch-at-age data, considering the same
species in the same or neighbouring regions in over-
lapping periods. Their parameters in the exploited
phase should be k*Z0 and α, where k* is a propor-
tionality constant.

In order to estimate the proportionality constant,
k*, we identify the first age, tp, in the set {t0,t1,...,tk}
contained in the baseline interval in which the esti-
mation of the survival and its parameters has been
made. Let Np be the population size at this age cor-
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responding to the cohort (or pseudo-cohort) that pro-
vides the catch-at-age data. That is: N(tp) = Np .

2.3. Estimation of Np and k*

By applying the stock and catch equations pro-
posed by Ferrandis (2006) to the successive age, ti,
such that tp ≤ ti ≤ tk–1, we have the following condi-
tional expectations:

(2.3.1)

(2.3.2)

with 

Z = k*Z0 (2.3.3)

Combining (2.3.1), (2.3.2) and (2.3.3) we obtain

(2.3.4)
where the unknowns are Np and k*. 

In general, catch-at-age data, {C(ti,ti+1); tp ≤ ti ≤
tk–1}, allow the estimation of the parameters Np and
k* from this set of catches and the expressions
(2.3.4) by non linear regression, i.e. by least squares
criteria. The estimates may be the initial values or
complementary for the application of maximum
likelihood as a method of estimation using the avail-
able stochastic models for the stock and the catch
processes (Ferrandis, 2006). And the estimation of
k* yields the estimation of the total mortality coeffi-
cient Z = k*Z0.

2.4. Estimation of an effective age of first capture

One way to estimate the effective age of first
capture may be, following the work of Shepherd
(1983), to consider the total catch of the cohort
(pseudo-cohort), C(0,∞), from an effective age of
first capture, tc. The catch equation (2.3.2) becomes

(2.4.1)

and the stock equation (2.3.1) applied to the interval
[tC, tp] yields 

(2.4.2)

Substituting (2.4.2) in (2.4.1) we have

(2.4.3)

which provides the estimation of an effective age
of first capture

. (2.4.5)

Alternatively, we can focus our attention on the
early age catches, C(tc,tp), obtained in the interval
[tc,tp]. Again, applying the stock equations (2.3.1)
and (2.4.2) and the catch equation (2.3.2), we obtain

(2.4.6)

which yields 

.(2.4.7)

Finally, considering the two intervals [0,tp) and
[tp,∞), by (5.3.2)

C(tp,∞) ≈ (Z – M)N(tp)/Z (2.4.8)

and combining (2.4.6) and (2.4.8), we have the
expression

. (2.4.9)

as a ratio between the catches in the two intervals. This
yields a new estimation of the age of first capture:

. (2.4.10)

The above expressions may be computed from the
information of the total or representative catches of
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the fishery fleet or, alternatively, using selectivity
studies of the commercial gears. The selectivity curve
assigns a probability of catch depending on the size or
the age of the individuals. Thus, weighting the indi-
viduals caught in the trawl survey by this probability
we “translate” the demographic structure obtained in
the survey to the demographic structure of the com-
mercial landings. We use these weighted frequencies
to apply expressions (2.4.5), (2.4.7) and (2.4.10). 

2.5. Estimation of the initial population size

Once the age of first capture has been estimated,
the expected catch until the first age considered in
the analysis, tp, is given by (2.4.6). This will fit the
observed catch exactly if equation (2.4.7) is used to
estimate the effective age of first capture.

By the stock equation (2.3.1), the initial size of
the considered cohort (pseudo-cohort) will be
obtained from the previous estimates:

(2.5.1)

and therefore

(2.5.2)

2.6. Goodness of fit 

The estimation of the parameters from a non-lin-
ear regression on the model (2.3.2) makes it possible
to calculate confidence intervals for these estimates
and the correlation between them, as well as the coef-
ficient of determination of the model, which will give
a measure of its goodness of fit. The graphs of the
observed versus the expected catches (given by
(2.3.2)) will provide a visual description of the fit.

2.7. Stock evaluation

The survival model established (1.1.1) and its
relation to the size of the population

E[N(t)] = N(0)S(t)

provide the estimation of the expected population in
number of the considered cohort at any age. This eval-
uation may be compared with those obtained by other
methods, such as virtual population analysis (VPA).

3. CONCLUSIONS 

The identification of the baseline age interval (an
interval in which the catches obtained in the trawl sur-
vey may be assumed to be representative of the stud-
ied cohorts of the population) makes it possible to
estimate the parameters of the proposed Weibull
model by maximum likelihood, and therefore to esti-
mate the baseline survival during the study period.

The separable model of fishing mortality rates
(Pope and Shepherd, 1984) has been adapted. Thus,
the survival/mortality of each specific cohort may be
expressed as a power/multiple of the baseline sur-
vival/mortality. Using this approach, the evolution of
the survival and mortality of the successive cohorts
during the study period becomes a particular case of
the proportional hazard models considered in the gen-
eral survival analysis framework. The exponent/factor
of the power/multiple relationship may be estimated
by non-linear regression or maximum likelihood. 

The model makes it possible to test hypotheses
about survival and mortality, and in particular the
stability of survival, during the study period by the
likelihood ratio method. 

The extension of the catch equation established
provides the expression of the catches in successive
age subintervals as a linear regression on a covariate
which depends on the survival. The regression coef-
ficients are proportional to the recruitment of the
cohort considered. The possible trends in these
regression coefficients therefore reflect trends in the
recruitment, whose statistical significance may be
quantified.

The basic estimation of the baseline survival
obtained from trawl survey data may be completed
by analysing commercial catch-at-age data. This can
help to check the coherence of the two kinds of
information as well as the relationship between their
respective survival and reference parameters.

The actual and potential uses of the proposed
methodology include the following:

- Estimation of a general survival (“baseline sur-
vival”) from a set of trawl surveys.

- Use of proportional hazard models related to
the separable model of fishing mortality rate to esti-
mate the specific survival for the various cohorts in
the study period.

- Identification of trends in the age structure
through the evolution of life expectancy.

- Use of the survival models to identify and test
possible recruitment trends.
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- Verifying the coherence between the estimated
baseline survival and other trawl surveys or age-
structured data provided by indirect evaluations
(VPA). This allows the comparison of the age struc-
ture corresponding to different regions and periods.

- Using the survival models to evaluate the stock
without applying an arbitrary terminal fishing mor-
tality rate. 

- Establishing diagnoses relative to the manage-
ment of the resource throughout the age-structure
parameters (life expectancy) and the estimation of
reference parameters derived from the mortality
rates, the biomass per recruit and the yield per
recruit.

The flow-chart of the operational tasks structur-
ing the application of the proposed methodology is
shown in Figure 1. These tasks are executed through

a set of computer programs that constitute the imple-
mentation of the numerical methods described in the
present work. The method is being applied to a set
of important target demersal species, mainly in the
Mediterranean Sea.
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FIG. 1. – Flow chart of the application of the Direct Survival Analysis method in its current state of development.
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APPENDIX

Likelihood estimation of the Weibull survival model

The logarithmic transform (“ln”) of the density function (4.4.6) of the observed ages in the selected inter-
val is:

(A.1) 

which provides the following log-likelihood function 

, (A.2)

whose derivative with respect to the mortality coefficient Z is

(A.3)

and therefore
(A.4)

which implies that

(A.5)

The derivative with respect to the exponent is
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. (A.7)

Substituting (A.5) in (A.7) we have 

, (A.8)

which is equivalent to

, (A.9)

where

, (A.10)

And finally, replacing Z in equation (A.4) by the expression (A.9) we obtain a single equation with a sin-
gle unknown α

, (A.11)

The solution of this equation and the corresponding value of Z given by equation (A.9) provide the like-
lihood estimations, Z� and α�, of the parameters of the proposed Weibull survival model.
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