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Summary: Anglerfishes are widely distributed from shallow to deep-water habitats occupying different ecological niches. 
To explain this adaptability, we performed a morpho-functional study on common benthic anglerfishes inhabiting the Indian 
deep-sea waters. Sensory capabilities of species were examined using the morphology and morphometry of sagitta otoliths 
(related to detection sound and hearing) and eye size (related to visual communication). We also performed an analysis of 
the degree of functional niche overlap using fish body traits to understand the coexistence of species. Otoliths showed a mor-
phological pattern similar to that of other anglerfishes: an archaesulcoid sulcus acusticus and variability in the irregularity of 
the dorsal margin. This last feature affected the allometric relationships between the otolith morphometry and fish length, as 
well as the otolith relative sizes of each species. The findings suggested that bigger otoliths are associated with the increase of 
depth distribution of species up to 1000 m, from which it decreases. Our hypothesis is that anglerfishes with irregular otolith 
shapes could be linked to more nocturnal feeding behaviour because they were characterized by greater eye sizes. The results 
also indicated interspecific significant differences in functional traits providing a low niche overlap. Therefore, our study 
supports the hypothesis of an environmental and ecological specialization of benthic anglerfishes.

Keywords: fish body traits; otolith shape; ecomorphology; Lophiiformes.

Diferenciando las características morfo-funcionales de las cinco especies más comunes de rapes de aguas profundas 
(Lophiiformes) de las islas de Andaman y Nicobar (Océano Índico oriental)

Resumen: Las especies del orden Lophiiformes habitan desde las aguas superficiales hasta las más profundas de los océanos 
ocupando diferentes nichos ecológicos. Con el fin de explicar esta adaptabilidad se llevó a cabo un estudio mofo-funcional 
de especies bentónicas comunes en aguas profundas del Océano Índico. La capacidad sensorial de las especies se analizó a 
partir de la morfología y morfometría del otolito sagitta (relacionado con la detección del sonido y la capacidad auditiva) 
y del tamaño del ojo (relacionado con la comunicación visual). Con el fin de comprender mejor la coexistencia entre espe-
cies, también se analizó el grado de solapamiento del nicho funcional usando atributos morfométricos del pez. Los otolitos 
presentaron una forma morfológica similar a otros lofiiformes: sulcus acusticus de tipo archaesulcoide y variabilidad en la 
irregularidad del margen dorsal. Este último carácter afectó a las relaciones alométricas entre la morfometría del otolito y 
la talla del pez, así como los tamañoa relativos del otolito de cada especie. Los resultados obtenidos sugieren que los otoli-
tos más grandes estarían asociados con el incremento de la profundidad de distribución de las especies hasta los 1000 m, a 
partir de la cual disminuirían. La hipótesis que sustentamos es que las especies con otolitos más irregulares podrían tener un 
comportamiento nocturno asociado con la alimentación, ya que éstas tienen los ojos más grandes. Los resultados también 
indicaron diferencias interespecíficas significativas en los atributos funcionales de las especies, lo cual proporcionó un bajo 
solapamiento entre los nichos. En definitiva, el presente estudio apoya la hipótesis de una especialización ambiental y ecoló-
gica de las especies bentónicas de lofiiformes.          
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INTRODUCTION

The order Lophiiformes, commonly known as an-
glerfishes, is a diverse group of benthic and pelagic 
species inhabiting shallow to deep-sea waters. This 
order comprises approximately 358 extant species in 
five suborders (Pietsch and Grobecker 1987, Nelson 
et al. 2006): Lophioidei, Antennarioidei, Chauna-
coidei, Ogcocephaloidei and Ceratioidei. Phyloge-
netic studies reveal that Lophioidei, the most primi-
tive group, evolved independently of the remaining 
groups (Caruso 1985, Pietsch and Grobecker 1987, 
Pietsch and Orr 2007, Miya et al. 2010). Although 
some lophiiform morphological features are similar 
(Caruso 1983, Pietsch and Orr 2007), body shape 
differs between clades: dorso-ventrally flattened in 
Lophioidei (with rhomboidal head) and Ogcocepha-
loidei (with triangular or circular head) (Caruso 1985, 
Ho and Shao 2008), laterally compressed in Anten-
narioidei (Pietsch and Grobecker 1987, Arnold and 
Pietsch 2012) and globose in Chaunacoidei (Ho and 
Ma 2016). In Ceratioidei, species are characterized 
by specific morphologies adapted to mesopelagic and 
bathypelagic lifestyle, which has led to their rapid 
diversification (Miya et al. 2010). In general, lophii-
forms are opportunistic (non-selective) ambushers, 
luring their prey by raising and moving the illicium, 
a modified first dorsal-fin spine with a terminal esca 
(bait) (Pietsch and Grobecker 1987, Afonso-Dias 
1997). The Ogcocephaloidei species seem to be more 
adapted for the capture of small demersal prey (du-
rophagy) such as gastropods, small crustaceans and 
polychaetes (Gibran and Castro 1999, Nagareda and 
Shenker 2008). Indistinctly, all species are considered 
top-predators where the capture efficiency is favoured 
by a jet-propulsive locomotion, which is produced 
through pore-like gill openings behind the pectoral 
fin (Pietsch 1981).

The Indian Ocean, and especially the region 
around the Andaman and Nicobar Islands, is char-
acterized by their rich deep-sea fishery resources 
(Venu and Kurup 2002, Jayaprakash et al. 2006, 
Hashim 2012, Sumod 2018, Rajeeshkumar 2018). 
Recent experimental surveys have reported 22 
lophiiforms (Rajeeshkumar 2018). This eco-evo-
lutionary scenario necessarily implies a high inter-
specific phenotypic variability leading to coexist-
ence or segregation of species. It is known that this 
phenotypic variability is linked to multiple extrinsic 

(Colborne et al. 2013, Aguilar-Medrano et al. 2016) 
and genetic factors (Pietsch and Orr 2007, Miya et 
al. 2010, Arnold 2015), avoiding direct competition 
for feeding resources (Bellwood et al. 2010, Freder-
ich et al. 2016). For example, the distribution range 
or temporal segregation in the behavioural activity 
could play a key role in the coexistence for many 
sympatric species (Carothers and Jaksić 1984, See-
hausen et al. 2008, Foster et al. 2015), as occurs be-
tween Lophius budegassa and L. piscatorius on the 
continental shelf and upper slope of the Mediterra-
nean Sea. Both species have similar prey preferenc-
es (Preciado et al. 2006, Bohórquez-Herrera 2015), 
but they have developed sensory specialization in 
eye and otolithic organs that allows L. budegassa 
to be more active at night, whereas L. piscatorius is 
more active during daytime (Hislop et al. 2000, Col-
menero et al. 2010). Thus, sensory (visual and hear-
ing) and morpho-functional features of an organism 
can be used to discern and understand the ecological 
segregation among species (Lombarte 1992, Arel-
lano et al. 1995, Tuset et al. 2016). Overall ecomor-
phological studies on the ecology of lophiiforms 
are scarce (Carlucci et al. 2009, Colmenero et al. 
2010), and there are none for the species inhabiting 
the Indian Ocean.

The aim of this work is to understand better the 
coexistence of the most common benthic species of 
lophiiforms occurring at the Andaman and Nicobar 
Islands (Rajan and Sreeraj 2013, Balakrishnan et al. 
2008, Hashim 2012, Rajeeshkumar et al. 2016, 2017, 
Ho et al. 2016a): Chaunax apus Lloyd, 1909 and C. 
multilepis Ho, Rajeesh and Bineesh, 2016 (Chau-
nacidae), Halieutaea coccinea Alcock, 1894 and 
Malthopsis lutea Alcock 1891 (Ogcocephalidae), 
and Lophiodes lugubris (Alcock, 1894) (Lophiidae). 
To this end, we characterized the sagitta otolith 
(henceforth otolith) morphology for each species 
that may be essential for building marine food webs 
(Lombarte et al. 2010, Tuset et al. 2008, 2010, 2018), 
analysed the morphometric relationships of otoliths 
with fish length as an indirect factor of the range 
of spatial distribution in depth of the species (Tuset 
et al. 2010, Colmenero et al. 2010, Nazir and Khan 
2019) and obtained functional traits as an indicator 
of ecological strategies and to detect the degree of 
functional niche overlapping between species (Gatz 
1979, Sibbing and Nagelkerke 2001, Karpouzi and 
Stergiou 2003, Wainwright et al. 2007).

Palabras clave: atributos del pez; forma del otolito; ecomorfología; Lophiiformes.
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MATERIALS AND METHODS

Data collection

Specimens were collected during the deep-sea fish-
ery exploratory surveys of the Fishery Oceanographic 
Research Vessel (FORV) Sagar Sampada (71.5 m LOA: 
2285 hp) (Cruise no 349) in Andaman and Nicobar wa-
ters in April 2016 using a High-Speed Demersal Trawl 
-crustacean version (HSDT-CV) at a towing speed of 
2.5 to 3.5 knots. Eight stations were surveyed (one op-
eration at each station) along the continental margins 
of the Andaman and Nicobar Islands (7.29-13.76°N 
and 92.14-93.11°E) at depths ranging from 300 to 650 

m (Fig. 1). The locations were scanned using a SIM-
RAD EK60 echo sounder before trawling operations 
and stations were selected on the basis of the suitability 
of the grounds for trawling. The fishing operations 
were carried out from 6 am to 6 pm depending upon 
the weather conditions.

The lophiiforms were identified following standard 
identification keys (Alcock 1891, 1894, Rajeeshkumar 
et al. 2016, Ho et al. 2016a, b). Only non-damaged 
adult fishes were selected for meristic and morphologi-
cal measurements and to extract the otoliths. The catch 
per unit effort (CPUE) and the spatial distribution of 
each species along with their geographical positions 
are given in the Figure 2.

Fig. 1. – Geographical locations of the five most common deep-sea benthic anglerfishes sampled from the Andaman and Nicobar Islands 
(eastern Indian Ocean).

Fig. 2. – Catch per unit effort (CPUE) of the five most common deep-sea benthic anglerfishes at various stations (y-axis) of the Andaman and 
Nicobar Islands (eastern Indian Ocean). Station depth is indicated below the respective stations (x-axis). (N, north, indicating the geographical 

location).
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Otolith morphology and morphometry

Otoliths were collected and washed with distilled 
water to remove exogenous matter, dried and kept in 
plastic vials for further analysis. Otoliths from the right 
side of each fish were oriented with the inner side (sul-
cus acusticus) uppermost on a slide in order to digitize 
their form using a microscope (S8APO Camera, Leica 
DFP-425). Otolith length (OL, mm), height (OH, mm), 
area (OA, mm2) and perimeter (OP, mm) were meas-
ured using ImageJ with magnification depending on 
otolith size. Otolith weight (OW, mg) was obtained us-
ing an electronic balance (Metler Toledo, ML 503) (see 
descriptive values in Appendix 1). The morphological 
characteristics of each species were described follow-
ing Tuset et al. (2008).

Fish body morphological data

Sixteen morphological variables were measured 
on each specimen using a Vernier calliper (0.1 mm 
precision): total length (TL), standard length (SL), eye 
diameter (ED), mouth opening (MO), head depth (HD), 
eye height (EH), pectoral fin base (PFB), pectoral fin 
insertion, pectoral fin length (PFL), pectoral fin sur-
face (PFS), caudal peduncle depth (CPD), caudal fin 
surface (CFS), caudal fin depth (CFD), body depth 
(BD), body length, body width (BW), mouth height 
(MH) and mouth width (MW) (Fig. 3). From these 
measurements, the following 11 ecomorphological 
attributes correlated with foraging, manoeuvrability 
and locomotion were selected for detailed studies. The 
formulas for estimating the functional traits are given 
in italicized letters.

 – Oral gape surface (Osf)=(MW×MH)/(BW×BD), 
which indicates the nature/size of the prey that can be 
captured. A large oral gape allows feeding on a wide 
size range including large prey (Karpouzi and Stergiou 
2003).

– Oral gape shape (Osh)=MH/MW, which defines 
the method for capturing food items. A greater width 
allows species to capture highly mobile prey and have 
a more aggressive behaviour (Karpouzi and Stergiou 
2003, Wainwright et al. 2007).

– Oral gape position (Ops)=MO/HD, which shows 
the feeding position in the water column. The posi-
tion of the oral gape influences the retention of prey 
during ingestion (Kumar et al. 2017a, Villéger et al. 
2017).

– Eye size (Edst)=ED/HD, which defines the prey 
detection efficiency. It also influences the feeding 
rhythms (nocturnal vs diurnal) and predator avoidance 
and indicates the availability of light in the microhabi-
tat (Boyle and Horn 2006, Bellwood et al. 2014).

– Eye position (Eps)=EH/HD, which displays the 
vertical position in the water column. High values in-
dicate dorsally located eyes (Watson and Balon 1984, 
Ribeiro et al. 2016).

– Body transversal shape (Bsh)=BD/BW, which 
indicates the vertical position of the fish in the water 
column as well as hydrodynamic efficiency (Villéger 
et al. 2017).

– Caudal peduncle throttling (Cpt)=CFD/CPD, 
which shows the caudal propulsion efficiency through 
the reduction of drag (Webb 1984, Zhao et al. 2014).

– Fin surface ratio (Fsr)=(2×PFS)/CFS, which 
indicates the type of propulsion between caudal and 
pectoral fins. Higher values denote a swimming driven 
by pectoral fins, whereas lower values correspond to 
a greater caudal fin propulsion (Mouillot et al. 2013, 
Zhao et al. 2014).

– Fin surface to body size ratio (Fsb)= ((2×PFS) + 
CFS)/(π/4×BW×BD), which indicates the acceleration 
and/or manoeuvring competence. Higher values indi-
cate prolonged sustained swimming speed and fitness, 
which positively influence endurance, acceleration and 
manoeuvring capacities (Zhao et al. 2014, Kumar et al. 
2017a).

Fig. 3. – Illustration of the morphological traits of the fishes measured for estimating functional indices (after Albouy et al. 2011). BD, body 
depth; BW, body width; CFD, caudal fin depth; CPD, caudal peduncle minimal depth; ED, eye diameter; EH, distance between the bottom 
of the head and the eye centre along the head depth axis; HD, head depth along the vertical axis of the eye; MH, mouth height; MO, mouth 
opening; MW, mouth width; PFB, body depth at the level of the pectoral fin insertion; PFi, distance between the insertion of pectoral fin and 

the bottom of the body; PFL, pectoral fin length; PFS, pectoral fin surface; SL, standard length. Fish drawings after Caruso (1981, 2002).
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– Aspect ratio of the pectoral fin (ArPF)= PFL2/
PFS, an indicator of swimming ability, which helps 
sustained swimming. Longer pectoral fins favour 
sustained swimming speed (Watson and Balon 1984, 
Casatti and Castro 2006).

– Aspect ratio of the caudal fin (ArCF)=CFD2/CFS, 
which indicates the caudal fin use for propulsion and/
or direction. A higher ratio produces the maximum 
thrust (Webb 1984, Bridge et al. 2016).

To estimate the functional traits, the morphological 
data were standardized to remove the allometric effect 
using the total weight (Mouillot et al. 2005, Kumar 
et al. 2017a). The allometric relationship between 
morphological data (X) and body mass (M) is X=aMb, 
where ‘b’ varies with species. The effect of body mass 
was eliminated by using the residuals of the common 
within-group slopes of linear regressions for each com-
ponent of body mass.

Statistical analysis

The Kolmogorov-Smirnov and Levene tests were 
used to check normality of the data distributions and 
variance homogeneity, respectively. The intraspecific 
variability was analysed considering the fish size-oto-
lith measurement relationships as a tool in the feeding 
ecology to estimate fish size and biomass (Kumar et 
al. 2017b, c) and the otolith relative size as a resem-
blance to fish habitat and depth distribution (Lombarte 
and Cruz 2007). For the first analysis, the relationships 
between otolith morphometric variables (OL, OH, OA, 
OP, OW) were described using the allometric power 
equation (Y = aXb) (Huxley 1924). Measurements were 
converted into logarithmic values (log10) to identify 
and exclude possible outliers in the data (Froese et al. 
2011). Regression parameters a and b were estimated 
by the least square regression method, where b repre-
sents the constant of differential growth rate (Froese 
2006). An analysis of covariance (ANCOVA) was 
performed to compare the regression slopes between 
species, treating the species as the main factor and fish 
size (SL) as a covariate. Specific difference was ana-
lysed using a post-hoc Tukey-HSD test. In the second 
analyses, the otolith measurements were standardized 
for each species by removing the effect of allometry 
(Lleonart et al. 2000). Different relative sizes were es-
timated for each otolith morphometric variable using 
the following criteria (Lombarte and Cruz 2007): ORi= 
(otolith variable)i SLb, with b=1 for OL, OH and OP 
variables, b=2 for OA and b=3 for OW. An ANOVA 
was conducted for each variable on the relative size to 
test differences in the averages among species. A post-
hoc test (Dunn’s test) was performed to elucidate the 
pairwise comparison of relative otolith sizes (Pohlert 
2014). All statistical analyses were performed in PAST 
(PAlaeontologicalSTatistics, version 3.26) (Hammer et 
al. 2001).

To order species in the functional space, a princi-
pal component analysis (PCA) based on the correla-
tion matrix of the functional traits was performed. The 
choice of which principal components to interpret was 
based on a broken-stick model, which constructs a 

null distribution of eigenvalues and compares it with 
observed ones (Collar and Wainwright 2006, Villéger 
et al. 2011). Our hypothesis of significant difference 
among the species and Bonferroni’s correction for 
post-hoc pairwise multiple comparisons were tested 
using multivariate analysis of variance (MANOVA) 
(Marcus 1993, Layman et al. 2005, Marrama and Kri-
wet 2017).

The degree of functional niche overlap among 
species was performed using a non-parametric kernel 
density function (NOK) (Mouillot et al. 2005, Mason et 
al. 2008, Geange et al. 2011):

	
Σ
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=
=

NO i j
W
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NOK (i, j, t) is the niche overlap between species i and 
j for the trait t, T is the number of functional traits and 
wt is the weighting parameter, which is calculated as:

	 Σ= + −
=

w
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2
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2
)t
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t
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1
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rtl is the Pearson correlation coefficient between traits 
t and l over all five species selected for the study. To 
understand the niche differences between the angler-
fishes, permutation tests were performed to assess 
whether the observed niche overlap was significantly 
low based on the potential distribution of niche overlap 
values (Mouillot et al. 2005, Mason et al. 2008, Geange 
et al. 2011). Pseudo-values were calculated through 
randomly permuting species types in the corresponding 
data set for more than 1000 runs followed by comput-
ing the distribution of the average niche overlap for the 
null model to create the statistical null distributions. A 
Bonferroni adjustment of type I (Quinn and Keough 
2002) was performed for the multiple comparisons. 
Density functions available in R (R Development Core 
Team 2017) were used to calculate niche overlap and 
for the subsequent null model tests. We followed the 
source code provided by Geange et al. (2011) for the 
above analysis in the R environment.

RESULTS

Otolith anatomical description

All species shared otolith features such as dorsal 
lobes and the lightly marked sulcus acusticus, with 
a well-defined crista inferior (Fig. 4). The otoliths of 
Chaunacidae (C. apus and C. multilepis) are charac-
terized by a sulcus acusticus with undifferentiated 
ostium and cauda referred to as archaesulcoid. Indeed, 
they maintain an oval shape throughout growth with a 
smoothed and deep convex ventral margin. The dor-
sal margin has a variable number of lobes depending 
on species. In general, C. apus have more lobes (5 to 
7) that are less angled than in C. multilepis. In Ogco-
cephalidae species, otoliths show a stronger differen-
tiation in shape: H. coccinea has a semi-circular pattern 
(in the largest specimens), with a high number of deep 
lobes (6 to 10), some irregularities on the dorsal mar-
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gin, a smooth, convex ventral margin, a rounded to an-
gled anterior margin, and an angled end at the posterior 
margin for the largest specimens, providing an oblong 
shape. In contrast, M. lutea has an oval shape, with a 
sinuous to lightly lobed dorsal margin (3 to 6 lobes) 
and a smooth, shallow, convex ventral margin, and the 
anterior margin is oblique, lacking a rostrum. In both 

species the sulcus acusticus is archaesulcoid, mesial 
and ascendant, with an oval ostium (poorly defined) 
and a cauda smaller than the ostium. In particular, the 
sulcus acusticus of M. lutea is placed in an inframedian 
position. Finally, the otolith of L. lugubris (Lophiidae) 
is characterized by a semi-circular to oblong shape (in 
the largest specimens), with a sinusoidal ventral mar-
gin and a deeply lobed (6 to 9) irregular dorsal margin, 
a blunt anterior margin and an undefined rostrum and 
pointed end of the posterior margin of the largest speci-
mens. The sulcus acusticus is a homosulcoid type, with 
oval ostium and cauda.

Interspecific variability in the otolith morphometry

All otolith morphometric variables showed a statis-
tically significant relationship with fish length for all 
species (Table 1, Appendix 2). However, otolith length 
and weight were the best variables correlated with fish 
size (r2 ranges from 0.740 to 0.936 for OL, and between 
0.708 and 0.959 for OW). The other variables showed a 
high intraspecific variation, and even attained very low 
values in the otolith height (r2=0.287) for M. lutea and 
the otolith perimeter (r2=0.243) for H. coccinea (Table 
1). The ANCOVA exhibited no differences between 
species in the slopes of relationships SL-OH (F=0.879, 
df=4, p=0.482) and SL-OA (F=2.158, p=0.085), but 
it indicated interspecific variability for the SL-OL 
(F= 4.764, df=4, p=0.002), SL-OP (F=2.705, df=4, 
p=0.039) and SL-OW (F=6.787, df=4, p<0.001) rela-
tionships (Appendix 3). In particular, the slope (b) for 
the SL-OW relationship was higher in M. lutea than in 
C. apus-H. coccinea, and higher in L. lugubris than 
in H. coccinea. In fact, H. coccinea and L. lugubris 
also varied for the SL-OP and SL-OL relationships, 
and L. lugubris also showed differences with C. apus 
for the latter.

The ANOVA tests revealed significant differences 
for all relative variables (OAR, F=166.2, df=4, p<0.05; 
OLR, F=120.1, df=4, p<0.05; OHR, F=309.8, df=4, 
p<0.05; OPR, F=46.6, df=4, p<0.05; OWR, F=124.1, 
df=4, p<0.05). Pairwise comparison using Dunn’s test 
(Bonferroni, p<0.05) indicated significant inter-species 
differences, except between Chaunax spp. (Fig. 5, 
Table 2). The highest interspecific variability was ob-

Fig. 4. – Left otoliths for the five most common deep-sea benthic 
anglerfishes from the Andaman and Nicobar Islands (eastern Indian 
Ocean). Chaunax apus: A, TL=9.1 cm; B, TL=9.5 cm; C, TL=12.0 
cm. Chaunax multilepis: A, TL=9.0 cm; B, TL=12.1 cm; C, TL=13.0 
cm.  Lophiodes lugubris: A,  TL=12.4 cm; B,  TL=14.5 cm; 
C, TL=17.1 cm. Halieutaea coccinea: A, TL=8.5 cm; B, TL=11.2 
cm; C, TL=11.5 cm. Malthopsis lutea: A, TL=7.4 cm; B, TL=7.5 cm; 

C, TL=8.2 cm. Scale bar =1 mm.

Table 1. – Regression parameters of the relationships between otolith measurements and fish length of the five most common deep-sea benthic 
anglerfishes from the Andaman and Nicobar Islands (eastern Indian Ocean). a, intercept; b, slope; n, number of specimens; OA, otolith area; 
OH, otolith height; OL, otolith length; OP, otolith perimeter; OW, otolith weight; r2, coefficient of determination; se, standard error of b; SL, 

standard length. The b values following with superscript letters indicates significant differences (p<0.001).

Relationship
Chaunax apus Chaunax multilepis Halieutaea coccinea 

n a b se (b) r2 n a b se (b) r2 n a b se (b) r2

SL-OA 10 0.170 1.06 0.081 0.955 16 0.150 1.05 0.148 0.785 16 0.070 1.07 0.127 0.835
SL-OH 10 0.490 0,48 0,039 0.951 16 0.800 0.36 0.077 0.606 16 0.260 0.52 0.089 0.711
SL-OL 10 0.572 0.53a 0.049 0.925 16 0.341 0.63ac 0.075 0.833 16 0.337 0.58a 0.069 0.838
SL-OP 10 0.220 0.59a,b 0.042 0.959 16 1.220 0.57a,b 0.083 0.768 16 3.370 0.33b 0.169 0.240
SL-OW 10 0.049 1.50ac 0.110 0.958 16 0.020 1.64ab 0.281 0.708 16 0.047 1.24a 0.109 0.902

Lophiodes lugubris Malthopsis lutea
n a b se (b) r2 n a b se (b) r2

SL-OA 15 0.007 1.53 0.209 0.804 12 0.220 0,89 0.213 0.636
SL-OH 15 0.238 0,53 0.098 0.690 12 1.220 0.29 0.147 0.287
SL-OL 15 0.049 0.96bc 0.121 0.829 12 0.300 0.53ac 0.100 0.740
SL-OP 15 0.270 0.82a 0.111 0.805 12 1.680 0.46a,b 0.076 0.787
SL-OW 15 0.001 2.01bc 0.233 0.851 12 0.004 2.62b 0.171 0.959
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tained for OHR and the lowest for OPR. No particular 
clustering was noted between species. In general, L. 
lugubris showed the lowest values for all relative sizes 
and C. apus the highest ones.

Comparing the functional niches

The first five PCA axes explained 97.9% of the 
total variance and the first three explained 93.8%. The 
PC1 axis alone contributed 63.7% of the total vari-
ance and was mainly correlated with Fsb (r=0.868) 

(Appendix 4). The positive values represented species 
with a more dorso-ventrally flattened body and higher 
swimming capabilities (M. lutea, H. coccinea and L. 
lugubris) versus species with higher body depth and 
lesser swimming abilities (C. multilepis and C. apus) 
(Fig. 6). The PC2 axis (19.1% of variance) was relat-
ed to propulsion and acceleration capabilities (ArCF, 
r=0.893), showing a similar pattern in all five spe-
cies. The PC3 axis (10.9% of variance) was mainly 
related to swimming performance (Arcf, r=–0.834). 
The remaining PC scores (4 to 11) cumulatively ex-

Fig. 5. – Boxplots (maximum. minimum. upper and lower quartiles) for the otolith relative size (OAR, relative otolith area; OHR, relative 
otolith height; OLR, relative otolith length; OPR, relative otolith perimeter; OWR, relative otolith weight) for the five most common deep-sea 
benthic anglerfishes from the Andaman and Nicobar Islands. Results of the pairwise comparison using Dunn’s post-hoc test (Bonferroni) 

indicated in different letters. Similar letters indicate no significant difference (p<0.05).
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plained 6.2% of the variance and were related to lo-
comotion traits (Appendix 4). MANOVA confirmed 
the occurrence of significant differences among these 
deep-sea anglerfishes (Wilk’s Lambda=00.0023, 
F44,258.3=22.88, p<0.001). The pairwise comparisons 
among species using sequential Bonferroni correction 
indicated significance differences among all species 
(p<0.001) (Appendix 5).

The functional traits Ops, Edst and Eps showed the 
highest interspecific differences, whereas Osf, Cpt and 
Fsr showed the lowest (Table 3, Fig. 7). The overall 

niche overlap ranged between 0.32 for C. apus-M. lu-
tea and 0.65 for H. coccinea-L. lugubris. The species 
with highest niche partitioning was M. lutea due to its 
differentiation in the variables such as Osf, Ops, Edst 
and Eps. The analysis revealed significant differences 
between species, with M. lutea having a more differ-
entiated functional niche, and both species of Chaunax 
showed more resemblance between them (Table 4). In 
any case, the findings indicated that functional niches 
did not overlap among the common five anglerfishes 
from the Indian Ocean.

Table 2. – Pairwise comparison of the five most common deep-sea benthic anglerfishes from the Andaman and Nicobar Islands (eastern Indian 
Ocean) using Dunn’s test (Bonferroni, p<0.001). OAR, relative otolith area; OHR, relative otolith height; OLR, relative otolith length; OPR, 

relative otolith perimeter; OWR, relative otolith weight. Statistically significant differences are indicated in bold (p<0.001).

Variable Species Chaunax multilepis Halieutaea coccinea Lophiodes lugubris Malthopsis lutea 

OAR

Chaunax apus 0.1333 0.000 0.000 1.000
Chaunax multilepis 0.312 0.000 0.467
Halieutaea coccinea 0.492 0.001
Lophiodes lugubris 0.000

OHR
Chaunax apus 1.000 0.018 0.000 1.000
Chaunax multilepis 0.262 0.000 0.021
Halieutaea coccinea 0.543 0.000
Lophiodes lugubris 0.000

OLR
Chaunax apus 0.969 0.156 0.000 0.000
Chaunax multilepis 1.000 0.000 0.006
Halieutaea coccinea 0.000 0.167
Lophiodes lugubris 0.999

OPR
Chaunax apus 0.066 1.000 0.000 1.000
Chaunax multilepis 0.206 0.024 0.315
Halieutaea coccinea 0.000 1.000
Lophiodes lugubris 0.000

OWR  
Chaunax apus 0.443 0.002 0.000 1.000
Chaunax multilepis 0.371 0.000 0.052
Halieutaea coccinea 0.543 0.000
Lophiodes lugubris       0.000

Fig. 6. – Functional space from principal component analysis for body shape of the five most common deep-sea benthic anglerfishes from the 
Andaman and Nicobar Islands (eastern Indian Ocean).
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DISCUSSION

Most studies performed on deep-sea fish species 
from Indian waters have focused on taxonomy and bi-
ology (Karuppasamy et al. 2008, Sreedhar et al. 2013, 

Kumar et al. 2016, 2018), and only few have analysed 
interspecific competition (Narayani et al. 2015, Kumar 
et al. 2017a). The present study delved into this matter 
by analysing the differences in the sensory capability 
and functional niche of most common anglerfishes 

Table 3. – Estimation of niche overlap (NO) for the functional traits considered of the five most common deep-sea benthic anglerfishes from 
the Andaman and Nicobar Islands (eastern Indian Ocean). Statistically different niches are indicated in bold (p<0.05). The meaning of traits 

are explained in the text.

Traits Species Chaunax multilepis Halieutaea coccinea Lophiodes lugubris Malthopsis lutea

ArCF

Chaunax apus 0.86 0.73 0.50 0.72
Chaunax multilepis 0.69 0.45 0.62
Halieutaea coccinea 0.54 0.61
Lophiodes lugubris 0.66

ArPF
Chaunax apus 0.56 0.44 0.26 0.13
Chaunax multilepis 0.82 0.64 0.48
Halieutaea coccinea 0.75 0.57
Lophiodes lugubris 0.81

Bsh
Chaunax apus 0.61 0.00 0.04 0.00
Chaunax multilepis 0.00 0.00 0.00
Halieutaea coccinea 0.80 0.47
Lophiodes lugubris 0.45

Cpt
Chaunax apus 0.61 0.72 0.66 0.71
Chaunax multilepis 0.77 0.40 0.47
Halieutaea coccinea 0.61 0.67
Lophiodes lugubris 0.82

Edst
Chaunax apus 0.28 0.48 0.10 0.00
Chaunax multilepis 0.71 0.28 0.04
Halieutaea coccinea 0.36 0.10
Lophiodes lugubris 0.54

Eps
Chaunax apus 0.22 0.45 0.36 0.04
Chaunax multilepis 0.67 0.53 0.40
Halieutaea coccinea 0.80 0.47
Lophiodes lugubris 0.51

Fsb
Chaunax apus 0.42 0.00 0.06 0.00
Chaunax multilepis 0.00 0.01 0.00
Halieutaea coccinea 0.78 0.52
Lophiodes lugubris 0.62

Fsr
Chaunax apus 0.72 0.49 0.78 0.75
Chaunax multilepis 0.74 0.91 0.91
Halieutaea coccinea 0.68 0.72
Lophiodes lugubris 0.90

Ops
Chaunax apus 0.20 0.83 0.57 0.25
Chaunax multilepis 0.21 0.38 0.56
Halieutaea coccinea 0.57 0.29
Lophiodes lugubris 0.38

Osf
Chaunax apus 0.73 0.91 0.81 0.20
Chaunax multilepis 0.75 0.74 0.27
Halieutaea coccinea 0.76 0.14
Lophiodes lugubris 0.22

Osh
Chaunax apus 0.65 0.71 0.64 0.68
Chaunax multilepis 0.87 0.38 0.40
Halieutaea coccinea 0.46 0.49
Lophiodes lugubris       0.84

Table 4. – Average (and standard deviation) weighed niche overlap for the functional traits considered between each pair of the five most com-
mon deep-sea benthic anglerfishes from the Andaman and Nicobar Islands (eastern Indian Ocean). Statistically different niches are indicated 

in bold (p<0.001).

Species Chaunax multilepis Halieutaea coccinea Lophiodes lugubris Malthopsis lutea 

Chaunax apus 0.53 (0.22) 0.52 (0.30) 0.44 (0.29) 0.32 (0.33)
Chaunax multilepis 0.57 (0.33) 0.43 (0.28) 0.38 (0.28)
Halieutaea coccinea 0.65 (0.15) 0.46 (0.20)
Lophiodes lugubris     0.62 (0.22)
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Fig. 7. – Species density distributions (y-axis) using kernel density models for each functional trait (x-axis) for the five most common deep-sea 
benthic anglerfishes from the Andaman and Nicobar Islands (eastern Indian Ocean). Grey dashed line indicates the total density for all species. 
ARCF, aspect ratio of the caudal fin; ARPF, aspect ratio of the pectoral fin; Bsh, body transversal shape; Cpt, caudal peduncle throttling; Edst, 
eye size; Eps, eye position; Fsb, fins surface to body size ratio; Fsr, fins surface ratio; Osf, oral gape surface; Osh, oral gape shape; Ops, oral 

gape position.
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inhabiting these waters. In this context, our findings 
revealed a strong environmental adaptation of sag-
itta otolith shape to the depth distribution of species, 
confirming the ecomorphological pattern proposed 
by Colmenero et al. (2010) for Lophius spp. from the 
Mediterranean Sea. Moreover, the dissimilarity be-
tween the functional niches indicated a low interspe-
cific niche overlap. Finally, no phylogenetic influence 
was inferred from the morpho-functional features ana-
lysed, as occurs in other fish species (Tuset et al. 2010, 
2018, Kéver et al. 2014, Schwarzhans 2014), although 
a greater number of taxa should be necessary for this 
purpose.

The relative size of fish otoliths tends to increase 
with depth (Lombarte and Cruz 2007), improving their 
hearing capacities to compensate for the limitation in 
visual communication (Lychakov and Rebane 2000, 
Paxton 2000, Tuset et al. 2018). However, this trend is 
reversed due to carbonate under-saturation below 1000 
m depth (Wilson 1985, Lombarte and Cruz 2007). 
This ecomorphological pattern was found in the pre-
sent study: Chaunax spp. and M. lutea, characterized 
by a wide bathymetric distribution (200-700 m; Ho et 
al. 2016a, Rajeeshkumar 2018), had a greater relative 
otolith size in the area, height and weight; L. lugubris, 
the shallowest species (<250 m; Alcock 1894, Ho et 
al. 2016a, Rajeeshkumar 2018), had a smaller relative 
otolith size; and H. coccinea, which can inhabit over 
>1000 m (Rajeeshkumar 2018), also reached low val-
ues for some relative otolith sizes. Certainly, the set of 
relative otolith indices did not follow the same trend, 
which may be due to the high irregularity of sculpture 
of the dorsal margin in anglerfishes (see more exam-
ples in AFORO website, http://aforo.cmima.csic.es/; 
Lombarte et al. 2006; present study). It is known that 
this variability occurs at inter- and intraspecific levels 
and is a disadvantage for the automated separation 
of stocks (example in Cañás et al. 2012) and for the 
identification of species. Moreover, it would explain 
the low coefficients of determination and the interspe-
cific similarity obtained in the slope value (b) of some 
morphometric relationships. Although some studies 
have demonstrated a morpho-functional correlation 
between the otolith and fish body shapes (Volpedo et 
al. 2008, Mille et al. 2016, Tuset et al. 2018), we found 
no evidence that the morphometry, relative otolith size 
and sculpture of the otolith margins were associated 
with the fish body morphotypes (globose versus dorso-
ventrally flattened) or had any phylogenetic meaning 
in anglerfishes.

Given that common anglerfishes from the Indian 
Ocean had different functional niches and can coexist 
in some bathymetries, the slight variations in their func-
tional traits suggest that functional variability is linked 
to competence for similar resource requirements (theory 
of limiting similarity, MacArthur and Levins 1967), as 
occurs in other fish groups such as cichlids (Winemiller 
et al. 1995), labrids (Wainwright et al. 2002), butterfly-
fishes (Bellwood et al. 2010), notothenids (Lombarte et 
al. 2010), rockfishes (Ingram 2011), damselfishes (Fred-
erich et al. 2016) and lanternfishes (Tuset et al. 2018). 
Anglerfishes with a dorso-ventrally flattened body (M. 

lutea, L. lugubris and H. coccinea) were characterized 
by a higher swimming efficiency in relation to species 
with globose body (Chaunax spp.). However, unlike M. 
lutea and H. coccinea, both L. lugubris and Chaunax 
spp. attract their prey with an angling apparatus (or illici-
um), which has a bait (esca) in the case of Chaunax spp. 
(Pietsch and Grobecker 1987, Armstrong et al. 1996, Ho 
et al. 2016a). This bait facilitates a predator behaviour 
based on slow movements by waiting for the potential 
prey very close to the mouth, whereas the greater swim-
ming ability of L. lugubris would indicate the possibility 
of capturing prey more actively (i.e. at a greater distance 
from its prey).

Overall, anglerfishes with higher swimming ca-
pability and oral gape surface (e.g., L. lugubris and 
H. coccinea) seem to ingest more mobile and larger 
prey, including fishes (Zhao et al. 2014, Kumar et al. 
2017a), whereas those with lesser swimming abilities 
or a smaller oral gape select crustaceans and gastro-
pods as the main potentially preys (Gibran and Castro 
1999, Karuppasamy et al. 2008, Nagareda and Shenker 
2008). Although the theory on the resource partitioning 
among the species in deep-sea habitats is essentially 
based on prey size and swimming capacity near the 
bottom (Papiol et al. 2013, Kumar et al. 2017a), species 
can also differentiate their feeding rhythms (nocturnal 
or diurnal). The ability to be more active at night is 
based on a higher sensory sensitivity from visual and 
hearing capabilities (Warrant 2004, Schmitz and Wain-
wright 2011, de Busserolles et al. 2013, Sadighzadeh 
et al. 2014). Colmenero et al. (2010) concluded that 
the eye size reflected the nocturnal phenotype between 
Lophius spp. from the Mediterranean Sea. Our findings 
suggest a similar behavioural ability in M. lutea and L. 
lugubris in relation to the remaining species.

In conclusion, anglerfishes have evolved function-
ally towards different ecological strategies to live in 
low-energy habitats. Hence, morpho-functional traits 
seem to be good ecological predictors for explaining 
the coexistence of species. Functional traits associated 
with feeding habits, locomotion and manoeuvrabil-
ity help us to understand the ecology of these species 
(Bridge et al. 2016, Kumar et al. 2017a) and to predict 
their niches (Mouillot et al. 2005, Mason et al. 2008, 
Zhao et al. 2014). The eyes seem to be crucial for the 
differentiation of their feeding activity and the otolith 
for their hearing capabilities (Colmenero et al. 2010).
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APPENDICES

Appendix 1. – Descriptive values of fish length and otolith measurements of the five most common deep-sea benthic anglerfishes from the 
Andaman and Nicobar Islands (eastern Indian Ocean). min, minimum; max, maximum; n, number of specimens; OA, otolith area; OH, otolith 

height; OL, otolith length; OP, otolith perimeter; OW, otolith weight; sd, standard deviation; SL, standard length.

Species Variables n min max mean sd

Chaunax apus OA 10 12.3 35 19.15 6.54
OH 3.47 5.53 4.19 0.62
OL 4.86 7.93 5.88 0.94
OP 13.2 23.4 16.58 2.98
OW 0.022 0.099 0.0395 0.022
SL 59 155 85.1 27.64

Chaunax multilepis OA 16 12.9 22.1 17.83 2.64
OH 3.59 4.53 4.07 0.24
OL 1.62 4.81 5.76 0.5
OP 13.3 17.7 15.86 1.28
OW 0.021 0.048 0.0325 0.007
SL 68 109 92 11.02

Halieutaea coccinea OA 16 3.47 10.21 7.3 1.78
OH 1.75 3.13 2.51 0.36
OL 2.89 5.19 4.25 0.59
OP 11.1 22.1 15.13 3.28
OW 0.006 0.015 0,01 0.003
SL 49 110 75.12 17.46

Lophiodes lugubris OA 15 6.31 15 9.98 3.18
OH 2.46 3.52 2.99 0.36
OL 3.69 6,3 4.73 0.93
OP 10.3 16.6 13.13 2.2
OW 0.006 0,03 0.134 0.007
SL 91 170 118.5 22.6

Malthopsis lutea OA 12 6.33 9.69 8 1.18
OH 3.48 4.63 4.02 0,3
OL 2.19 2.91 2.59 0.22
OP 9,6 11.96 10.73 0.75
OW 0.006 0.021 0.016 0.004
SL 41 67 57.25 7.16

Appendix 2. – Relationship between fish size (SL, cm) and otolith morphometric variables (A, otolith area; B, otolith length; C, otolith height; 
D, otolith perimeter; E, otolith weight) for the five most common deep-sea benthic anglerfishes from the Andaman and Nicobar Islands (east-
ern Indian Ocean). C. multilepis, red dash; C. apus, black square; L. lugubris, blue diamond; H. coccinea, green triangle; M. lutea, blue circle.
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Appendix 3. – Results of the ANCOVA for the relationship between 
fish size (SL) and otolith measurements of the five most common 
deep-sea benthic anglerfishes from the Andaman and Nicobar Is-
lands (eastern Indian Ocean). OA, otolith area; OH, otolith height; 
OL, otolith length; OP, otolith perimeter; OW, otolith weight; SL, 
standard length; df, degrees of freedom; Sum Sq, sum of squares; 
Mean Sq, mean sum of squares; Pr, significance level. Statistically 

significant differences indicated in bold.

Variable df Sum Sq Mean Sq F value Pr(>F)

OA
SL 1 0.760 0.760 371.152 <0.001
Species 4 1.873 0.470 229.436 <0.001
SL: Species 4 0.018 0.004 2.158 0.085
Residuals 59 0.121 0.002

OH
SL 1 0.011 0.101 15.474 <0.001
Species 4 0.657 0.164 238.848 <0.001
SL: Species 4 0.002 0.001 0.879 0.482
Residuals 59

OL
SL 1 0.660 0.660 1074.370 <0.001
Species 4 0.531 0.133 216.269 <0.001
SL: Species 4 0.012 0.003 4.764 0.002
Residuals 59 0.036 0.001

OP
SL 1 0.157 0.157 127.371 <0.001
Species 4 0.240 0.060 48.657 <0.001
SL: Species 4 0.013 0.003 2.706 0,039
Residuals 57 0.070 0.001

OW
SL 1 0.957 0.957 350.515 <0.001
Species 4 3.746 0.936 343.147 <0.001
SL: Species 4 0.074 0.019 6.787 <0.001
Residuals 59 0.161 0.003    

Appendix 4. – Correlation between principal components and 
functional traits (see text for acronyms) of the five most common 
deep-sea benthic anglerfishes from the Andaman and Nicobar Is-
lands (eastern Indian Ocean). In bold, higher absolute correlation 

values  (r>0.3). 

Traits PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

Osf –0.030 –0.068 0.153 0.739 0.253 0.306
Osh –0.034 0.019 0.012 0.120 0.653 –0.101
Ops 0.050 –0.084 0.168 0.499 –0.548 –0.066
Edst 0.075 0.037 –0.051 –0.149 –0.302 0.041
Eps –0.018 –0.022 0,039 0.233 –0.166 0.061
Bsh –0.236 –0.012 –0.169 0.056 –0.077 0.215
CPt –0.084 0.274 0.162 0.182 0.160 –0.686
FSr 0.013 0.021 0.137 –0.139 0.212 0.570
FSb 0.868 0.130 0.360 –0.045 0.041 0.035
ArPF 0.350 0.309 –0.834 0.236 0.028 0.026
ArCF –0.225 0.893 0.212 –0.014 –0.109 0.205

Appendix 5. – Results of the inter-species classification using canonical variate analysis for fish body shape of the five most common deep-sea 
benthic anglerfishes from the Andaman and Nicobar Islands (eastern Indian Ocean). Predicted group membership in each group are in bold 

letters and percentage of classification is in parenthesis.

Species Chaunax apus Chaunax multilepis Halieutaea coccinea Lophiodes lugubris Malthopsis lutea Total

Chaunax apus 10 (100) 0 0 0 0 10
Chaunax multilepis 0 16 (100) 0 0 0 16
Halieutaea coccinea 0 0 19 (95) 1 0 20
Lophiodes lugubris 0 0 1 17 (89.5) 3 21
Malthopsis lutea 0 0 0 1 14 (82.3) 15


