Acarnidae (Porifera: Demospongiae: Poecilosclerida) from the Mexican Pacific Ocean with the description of six new species

JOSE MARIA AGUILAR-CAMACHO, JOSE LUIS CARBALLO and JOSE ANTONIO CRUZ-BARRAZA

Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (Estación Mazatlán). Avenida Joel Montes Camarena s/n, Mazatlán, México C.P.82000, PO Box 811. E-mail: jmaguilarcam@gmail.com

SUMMARY: The family Acarnidae is characterized by sponges with ectosomal diactinal spicules and choanosomal monactinal spicules. Microscleres include palmate isochelae, toxas and echinating acanthostyles. We described ten species from the Mexican Pacific Ocean. Six of them are new to science: Acarnus michoacanensis n. sp., Acarnus oaxaquensis n. sp., Acarnus sabulum n. sp., Acheliderma fulvum n. sp., Megaciella toxispinosa n. sp. and Iophon bipocillum n. sp. Four are known in Eastern Pacific waters: Acarnus erithacus, Acarnus peruanus, Megaciella microtoxa and Iophon indentatum.

Keywords: Porifera, Acarnidae, Mexican Pacific, taxonomy, new species.

INTRODUCTION

The systematics of the order Poecilosclerida is currently based on the chelae and the spicule shape (Hajdu et al. 1994). The family Acarnidae (Poecilosclerida: Microcionina) is characterized by sponges with a tangential ectosomal skeleton made of tylotes with smooth or microspined heads (Hooper 2002a). The choanosomal skeleton has different arrangements: plumoreticulate, halichondriid, hymedesmoid or isotropic (van Soest et al. 1994). Microscleres include palmate isochelae, toxas and echinating acanthostyles (Hooper 2002a). However, species of the genus lophon bear aniscochelae and bipocilla as microscleres (Desqueyroux-Fuández and van Soest 1996). The principal difference between the families Acarnidae and Microcionidae is the ectosomal spicule morphology: diactinal in Acarnidae and monactinal in Microcionidae (Hooper 2002a). Species of Acarnidae have an encrusting growth form, living over and under the rocks, crevices and vertical walls (van Soest et al. 1994). Species of the genera Zyzzya and Paracornulum can burrow carbonate structures such as corals and bivalve shells (Hooper 2002a).

In this contribution, we described ten species of this family from the Mexican Pacific Coast. Acarnus erithacus de Laubenfels, 1927 is described based on material from the Pacific Coast of USA and from the...
Gulf of California. *Acarnus peruanus* van Soest et al. 1991, originally described from Peru, is reported for first time from the northeast Pacific Coast. We redescribed and established a neotype for *Megaciella microtoxa* (Dickinson, 1945). *Iophon indentatum* Wilson, 1904 is described on material from the Gulf of California. We propose six species new to science: *Acarnus michoacanensis* n. sp., *Acarnus oaxaquensis* n. sp., *Acarnus sabulum* n. sp., *Acheliderma fulvum* n. sp., *Megaciella toxispinosa* n. sp. and *Iophon bipocillum* n. sp. Based on the literature, we discuss the genus *Acheliderma* Topsent, 1892 and consider that the monotypic genus *Fusifer* Dendy, 1896 is not a junior synonym of *Acheliderma*. We discuss the genus *Megaciella* Hallman, 1920 and consider that some species do not have the morphological diagnostic features of this genus.

MATERIAL AND METHODS

Specimens from shallow waters were collected by snorkeling and scuba diving; specimens from deeper waters by bottom trawling. Sponges were fixed in formaldehyde 4% and transferred in ethanol 70% for preservation. Spicule and skeleton preparation for light and electron microscopy (SEM) followed the techniques described by Boury-Esnault and Rützler (1997). Twenty-five spicules of each category chosen at random were measured for each specimen. The minimum-(average)-maximum measurement for each spicule category was calculated.

Holotypes were deposited in the Museo de Ciencias Naturales de Madrid (MCNM), and paratypes in the “Colección de Esponjas del Pacífico Mexicano” (LEB-ICML-UNAM). Additional material from Los Angeles County Museum (LACM) and the Allan Hancock Foundation (AHF) was also examined.

SYSTEMATICS

Class DEMOSPONGIAE Sollas, 1885
Order POECILOSCLERIDA Topsent, 1928
Suborder MICROCIONINA Hajdu, van Soest and Hooper, 1994
Family ACARNIDAE Dendy, 1922
Genus *Acarnus* Gray, 1867

Remarks. *Acarnus* is a monophyletic taxon based on the presence of the cladotylote spicule which is considered a synapomorphic character of the genus in the family Acarnidae. The genus *Acarnus* is divided into three main groups according to some morphological features: The “innominatus” species group (*A. innominatus*), the “tortilis” species group (*A. tortilis*), and the “souriei” species group (*A. souriei*) (see van Soest et al. 1991).

“Innominatus” species group

Remarks. Species of *Acarnus* belonging to the “innominatus” group have styles with a smooth base; the first cladotylote category has a smooth shaft and lacks hooks on the distal extremity. The skeleton is renieroid or isotropic occasionally obscured by an anisotropic arrangement (see van Soest et al. 1991).

Acarnus erithacus de Laubenfels, 1927
(Figs 1A, B and 2, Table 1)

Holotype. U.S.N.M. 21430, 24/01/1924, Santa Catalina Island, (California). 33 m (not examined).

Scale: A, D, 60 μm; B, 50 μm; C, F, 40 μm; E, 30 μm; G, 3 μm.
Description. Massive, cushion-shaped or vase-shaped sponge 4-10 cm long and 1-7 cm thick. Surface uneven. Oscula circular to oval shaped (1-2 cm long×5-8 mm high), ostia elliptical (600-800 μm long) and unevenly distributed. Texture hard and difficult to tear. Colour in life red or brown, pale in preservation (Fig. 1A, B).

Skeleton. Ectosomal tylostyles straight with microspined heads: 160-420×2.5-7.5 μm (Fig. 2A). Choanosomal styles straight or curved: 230-850×7.5-50 μm (Fig. 2B). Cladotylolites with three to four clades in two categories: I, long and thick (180-610×5-25 μm), cladome 12.5-90 μm (Fig. 2C); II, short and microspined (65-180×2.5-5 μm), cladome 5-20 μm (Fig. 2D). Toxas with a pronounced curvature in two categories: I, long, thick and smooth (180-610×5-25 μm), cladome 12.5-90 μm (Fig. 2C); II, short and microspined (65-180×2.5-5 μm), cladome 5-20 μm (Fig. 2D). Toxas with a pronounced curvature in two categories: I, long and thick (230-650 μm); II, thin (25-100 μm) (Fig. 2E). Oxhorn toxas in two categories: I, thick (35-140 μm); II, thin (25-100 μm) (Fig. 2F). Palmate isocheles with the alae fused to the shaft (10-15 μm) (Fig. 2G). The ectosomal skeleton is an isotropic reticulum of ascending secondary multispicular fibres (30-150 μm) (Fig. 2E). Oxhorn toxas in two categories: I, long, thick and smooth (180-610×5-25 μm), cladome 12.5-90 μm (Fig. 2C); II, short and microspined (65-180×2.5-5 μm), cladome 5-20 μm (Fig. 2D). Toxas with a pronounced curvature in two categories: I, long and thick (230-650 μm); II, thin (25-100 μm) (Fig. 2E). Oxhorn toxas in two categories: I, thick (35-140 μm); II, thin (25-100 μm) (Fig. 2F). Palmate isocheles with the alae fused to the shaft (10-15 μm) (Fig. 2G). The ectosomal skeleton is a dense layer of tylostyles (30-60 μm thick). The choanosomal skeleton is an isotropic reticulum of ascending multispecific fibres (80-250 μm thick), interconnected by secondary multispecific fibres (30-150 μm thick). The organization forms rectangular and quadrangular meshes (160-300 μm wide). Microscleres are dispersed with no special organization.

Remarks: Acarnus erithacus de Laubenfels, 1927 is a subtidal and deep-sea species found on the Pacific Coast of USA (Bakus 1966) and in the Gulf of California (Dickinson 1945, Hofknecht 1978). We found differences in the length and the width of the styles and

Table 2. – Comparative table data of the *Acarnus* species of the “souriei” group from the Mexican Pacific and other specific worldwide localities. Values are expressed in minimum-average-maximum (μm). *Spicule measurements from the original description.

<table>
<thead>
<tr>
<th>Material examined</th>
<th>Tyloles (length×width)</th>
<th>Acanthostyles (length×width)</th>
<th>Cladotylotes (length×width×cladome width)</th>
<th>Toxas (length)</th>
<th>Palmate isochelae (length)</th>
<th>Locality and depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. peruanus LEB-727</td>
<td>117.5-(176.5)-200×2.5-(4.2)-5</td>
<td>150-(267.3)-355×7.5-(10.6)-12.5</td>
<td>75-(84.8)-98×2.5-(4.8)-6.3</td>
<td>I.-97.5-(118)-138×6.3-(7)-10x 9-(17.6)-22.5 II.-57.5-(67.8)-75×2.5-(3.3)-4x 7.5-(6.8)-15</td>
<td>I.-125-(166.6)-210 II.-25-(41)-75</td>
<td>12-(13.8)-17.5 Puente Maviri, Sinaloa. 5 m.</td>
</tr>
<tr>
<td>A. michoacanensis n. sp. MNCM 1.01/688</td>
<td>175-(220.5)-260×2.5-(3.6)-5</td>
<td>207.5-(265.7)-277×5-(6.7)-8×5.5-(7.2)-8.8</td>
<td>62.5-(68.1)-72.5×4(4.7)-5.5</td>
<td>115-(123.2)-135×2.5-(2.7)-3x 12.5-(12.9)-14</td>
<td>I.-165-(173.1)-205 II.-47.5-(65.5)-90</td>
<td>11.5-(12)-12.5 Michoacan. 8 m.</td>
</tr>
<tr>
<td>A. souriei (Lévi, 1952)</td>
<td>210-270×3</td>
<td>180-230×3-10</td>
<td>105-160×5</td>
<td>I.-100-165 II.76-80</td>
<td>I.-80 II.-150 III.-190</td>
<td>14 Senegal. 1-30 m.</td>
</tr>
<tr>
<td>A. radovani (Boury-Esnault, 1973)</td>
<td>350-380×3-5</td>
<td>50×3-9</td>
<td>170-220×4-6</td>
<td>I.-70-105 II.-50-205 III.-?</td>
<td>10-22 NE Brazil Island. 51 m.</td>
<td></td>
</tr>
</tbody>
</table>
cladotylotes I of specimens collected from deeper waters (Table 1). However, we assumed that it is the same species, because the material examined was found in the same geographical area and bears the same spicule elements. The differences in the spicule measurements of *A. erithacus* may be attributable to dissolve silica in the water, as has been demonstrated in other sponge species (see Uriz et al. 2000).

“Souriei” species group

Remarks. Species of *Acarnus* belonging to the “souriei” group are characterized mainly by the possession of acanthostyles which are considered a synapomorph feature, because they are present in many genera and families of the order Poecilosclerida (van Soest et al. 1991).

Acarnus peruanus van Soest, Hooper and Hiemstra, 1991 (Figs 1C and 3, Table 2)

Acarnus peruanus van Soest et al. 1991: 70.

Holotype. U.S.N.M. 23264 Isla Lobos (Peru) 07°S 80°W depth unknown (Not examined)

Material examined. 727-LEB-ICML-UNAM. 14/11/2002: Puente Maviri (Sinaloa), 5 m, (25°34′55″N 109°06′52″W).

Description. Encrusting sponge growing over rocks from 5 cm long and 1-3 mm thick. Surface smooth. Oscula circular (1.5 mm in diameter) and ostia circular to oval-shaped (0.8-1.2 mm in diameter) and evenly distributed. Consistency compressible and easy to tear. Colour in life red or light brown, pale in preservation (Fig. 1C).

Skeleton. Ectosomal tyloades straight with microspined heads: 117.5-200×2.5-5 μm (Fig. 3A). Choanosomal styles straight or slightly curved, with smooth or microspined base: 150-355×7.5-12.5 μm (Fig. 3B). Cladotylotes microspined with four clades in two categories: I, 97-138×6.3-10 μm, cladome 9-22.5 μm (Fig. 3C); II, 57.5-75×2.5-4 μm, cladome 7.5-15 μm (Fig. 3D). Acanthostyles with short spines: 75-98×2.5-6.3 μm (Fig. 3E). Toxas in two categories: I, elongated with a slightly curvature in the middle (125-210 μm) (Fig. 3F); II, thin and slightly curved (25-75 μm) (Fig. 3G). Palmate isochelae with the alae fused to the shaft: 12-17.5 μm (Fig. 3H). The ectosome is a tangential layer of tyloades (80-170 μm thick). The choanosomal...

![Fig. 4. – A, Acarnus michoacanensis n. sp. Preserved specimen growing over coral frame. B, Acarnus oaxaquensis n. sp. Preserved encrusting sponge growing over coral frame. C, Acarnus sabulum n. sp. Preserved specimen growing over rhodolits. D, Acheliderma fulvum n. sp. Preserved encrusting sponge. Scale: A, B, C, 1 cm; D, 2 cm.](image-url)

SCI. MAR., 77(4), December 2013, 677-696. ISSN 0214-8358 doi: 10.3989/scimar.03800.06A
skeleton is an isotropic reticulum of multispecific ascending primary fibres (40-90 μm thick). Interconnected by secondary pauci- or multispecific fibres (25-30 μm thick). Acanthostyles and cladotylotes are echinating the primary fibres. Microscleres are dispersed with no special organization.

Remarks: *Acarnus peruanus* van Soest et al. 1991 was originally described from the coast of Peru. The spicule measurements of the material examined match with the original description (Table 2). This is the first record of this species in the northeast Pacific Coast.

Acarnus michoacanensis n. sp.

(Figs 4A and 5, Table 2)

Material examined. Holotype, MCNM 1.01/688, 05/24/2005, Faro de Bucerías (Michoacán) 8 m (18°20’56’’N 103°30’33’’W). Paratype: 1281-LEB-ICML-UNAM, 05/24/2005, Faro de Bucerías (Michoacán) 8 m (18°20’56’’N 103°30’33’’W).

Description. Thinly encrusting sponge (2 mm thick) growing into dead coral fragments. Surface hispid with spicules protruding externally. Consistency firm and somewhat crumbly. Colour in life not observed, pale to ochre in preservation (Fig. 4A).

Skeleton. Ectosomal tyloides with microspined heads: 155-260×2.5-5 μm (Fig. 5A). Choanosomal styles, slightly curved with microspined base: 207.5-277×5-8 μm (Fig. 5B). Cladotylotes microspined with four clades: 112.5-135×2.5-3 μm; cladome 10.5-14 μm (Fig. 5C). Acanthostyles covered with short spines: 47.5-72.5×4-5.5 μm (Fig. 5D). Toxas in two categories: I, thin with a curvature in the middle (152-210 μm) (Fig. 5E); II, wing-shaped (42-92.5 μm) (Fig. 5F). Palmate isochelae with the alae fused to the shaft: 11.3-12.5 μm (Fig. 5G). The ectosomal skeleton is a tangential layer of tyloides. The choanosomal skeleton is hymedesmoid. Main styles and acanthostyles are embedded in a spongin layer. Microscleres are dispersed with no special organization.

Etymology. Named “michoacanensis” because of the incidence of this species in Michoacan.

Remarks. *Acarnus michoacanensis* n. sp. is a subtidal species found in the South Eastern Pacific of Mexico (Michoacan). This species is morphologically similar to *Acarnus peruanus* van Soest et al. 1991. However, *A. peruanus* has cladotylotes in two categories and an isotropic skeleton, while *A. michoacanensis* n. sp. has one category of cladotylotes and an hymedesmoid skeleton.
From the “souriei” species group, three species have cladotylotes in one category. *A. souriei* (Lévi, 1952) and *A. radovani* (Boury-Esnault, 1973) have two categories of acanthostyles and toxas in three sizes. *A. michoacanensis* n. sp. has one category of acanthostyles and toxas in two sizes.

Acarnus tener Tanita, 1963 is an encrusting to massive sponge with a plumose skeleton formed by ascending tracts, while *Acarnus michoacanensis* n. sp. is an encrusting sponge with a hymedesmoid skeleton. The remaining species of the “souriei” group have some spiculae elements of different length than *A. michoacanensis* n. sp. (Table 2).

“Tortilis” species group

Remarks. Species of *Acarnus* belonging to the “tortilis” group are characterized by the lack of acanthostyles and the presence of two categories of cladotylotes microspined (van Soest et al. 1991).

Acarnus oaxaquensis n. sp.
(Figs 4B and 6, Table 3)

Material examined. Holotype, MCNM 1.01/689, 07/11/2005, Isla Cacaluta (Oaxaca) 4 m (15°38’23”N 96°29’01”W). Paratypes: 1178-LEB-ICML-UNAM, 07/11/2005, Isla Cacaluta (Oaxaca) 4 m (15°38’23”N 96°29’01”W), 1195-LEB-ICML-UNAM, 05/11/2005, Isla Cacaluta (Oaxaca) 4 m (15°38’23”N 96°29’01”W).

Description. Thinly encrusting sponge (<1 mm thick), living inside and over coral cavities. Surface hispid, due to spicules protruding externally to the surface. Consistency fleshy and easy to tear. Colour in life not observed, pale brown or whitish in preservation (Fig. 4B).

Skeleton. Ectosomal tyloites straight with microspined heads: 105-268×2-5 μm (Fig. 6A). Choanosomal styles slightly curved with microspined base: 192.5-325×3-10 μm (Fig. 6B). Cladotylotes with three and four cladodes in two categories: I, long, thick and microspined (125-162.5×3-5 μm), cladome 10-20 μm (Fig. 6C); II, short with microspined shaft (62.5-82.5×2-3 μm), cladome 7.5-10 μm (Fig. 6D). Toxas in two categories: I, thin and curved in variable sizes (35-170 μm) (Fig. 6E); II, oxhorn and thick (57.5-90 μm) (Fig. 6F). Palmate isochelae with the alae fused to the shaft: 17.5-25 μm (Fig. 6G). The ectosomal skeleton is a dense layer of tyloites. The choanosomal skeleton is hymedesmoid. Main styles and cladotylotes are erected in a spongine layer. Microscleres are dispersed with no special organization.

Etymology. Named “oaxaquensis” because of the type locality.

Remarks. *Acarnus oaxaquensis* n. sp. is found on the southeast Pacific Coast of Mexico (Oaxaca). Currently, there are five species described worldwide belonging to the “tortilis group”. The main difference of *A. oaxaquensis* n. sp. from these species is that the tyloites are the shortest (Table 3).

Acarnus sabulum n. sp.
(Figs 4C and 7, Table 3)

Material examined. Holotype, MCNM 1.01/690, 12/10/2008, CFE Bahía Magdalena (Baja California Sur) 3 m (24°48’45”N 112°05’59”W). Paratypes: 1126-LEB-ICML-UNAM, 03/04/2005, Punta Pinta (Sonora), 4 m (31°20’14”N 113°38’13”W), 1127-LEB-ICML-UNAM, 12/10/2008, CFE Bahía Magdalena (Baja California Sur) 3 m (24°48’45”N 112°05’59”W), 1838-LEB-ICML-UNAM, 12/10/2008, CFE Bahía Magdalena (Baja California Sur) 3 m (24°48’45”N 112°05’59”W).

Description. Thinly encrusting sponge growing on rocky areas and rhodoliths, from 3 to 5 mm long.
Table 3. – Comparative table data of the *Acarnus* species of the “tortilis” group from the Mexican Pacific and other specific worldwide localities. Values are expressed in minimum-average-maximum (μm). *Spicule measurements from the original description.

<table>
<thead>
<tr>
<th>Material examined</th>
<th>Tylotes (length×width)</th>
<th>Styles (length×width)</th>
<th>Cladotylotes (length×width×cladome width)</th>
<th>Toxas (length)</th>
<th>Palmate isochelae (length)</th>
<th>Locality and depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acarnus oaxaquensis n. sp.</td>
<td>165-(225.5)-265 x2-(3.3)-6</td>
<td>210-(242.5)-315 x3-(5.3)-7.5</td>
<td>I.-1.125-(135)-160 x3-(3.4)-3.8 x10-(15.4)-20</td>
<td>I.-45-(102.5)-155</td>
<td>I.-37.5-(75.8)-162.5</td>
<td>Isla Cacaluta (Oaxaca). 4 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II.-65-(72.5)-85 x2.5-(2.6)-3 x3-(10.3)-17.5</td>
<td>II.-65-(72.5)-85</td>
<td>II.-60-(75)-90</td>
<td>Isla Cacaluta (Oaxaca). 4 m.</td>
</tr>
<tr>
<td>Acarnus sabulum n. sp.</td>
<td>150-(167.5)-190 x2-(2.3)-5</td>
<td>200-(263.5)-315 x2.5-(7.5)-10</td>
<td>I.-1.100-(119.5)-150 x3-(4.2)-5 x10-(13.9)-15</td>
<td>I.-1.11.5-(145.7)-165</td>
<td>I.-82.5-(118.8)-137.5</td>
<td>Bahía Magdalena. 3m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II.-67.5-(70)-80 x2.5-(2.6)-3 x10-(10.8)-11.3</td>
<td>II.-62.5-(68.3)-72.5 x2.5-(2.6)-3 x10-(11.3)-12.5</td>
<td>II.-50-(79.6)-105</td>
<td>Puerto Peñasco Sonora. 4 m.</td>
</tr>
<tr>
<td>A. deweerdtiae van Soest et al., 1991*</td>
<td>350x3</td>
<td>400x6</td>
<td>109-265 x5-(8)</td>
<td>40-180</td>
<td>10-(13.1)-15</td>
<td>Caribbean Region. 20-100 m.</td>
</tr>
<tr>
<td>A. toxeata Boury-Exnault, 1973*</td>
<td>213-472x3</td>
<td>12-16</td>
<td>I.-1.250-395x3-9</td>
<td>II.-28-265</td>
<td>II.-25-(51.6)-80</td>
<td>Brazil Coast. 50 m.</td>
</tr>
<tr>
<td>A. topsenti Dendy, 1922*</td>
<td>220x3</td>
<td>220-250x7</td>
<td>60-110x4</td>
<td>II.-56-162x3</td>
<td>II.-30-(33.3)-35</td>
<td>Western Indian Ocean. 5m.</td>
</tr>
<tr>
<td>A. bergquistae van Soest et al., 1991*</td>
<td>222-360x3-4</td>
<td>210-330x9-16</td>
<td>I.-1.151-212x5</td>
<td>40-265</td>
<td>III.-30-(37)-40</td>
<td>North Eastern Australia. 10 m.</td>
</tr>
<tr>
<td>A. tortilis Topsent, 1892*</td>
<td>380x5</td>
<td>550x10</td>
<td>I.-2.200-5x-6</td>
<td>I.-20-150</td>
<td>II.-600</td>
<td>Mediterranean and North East Atlantic. 91 m.</td>
</tr>
</tbody>
</table>

and <1 mm thick. Surface smooth, Oscula and ostia not observed. Consistency soft and flexible. Specimens are characterized by an amount of sediment in the choanosome. Colour in life red, whitish and translucent in preservation (Fig. 4C).

Skeleton. Ectosomal tylotes straight with microspined heads: 140-240x2-5 μm (Fig. 7A). Choanosomal styles slightly curved with smooth or microspined base: 200-330x2.5-10 μm (Fig. 7B). Cladotylotes microspined with four clades in two categories: I, long and thick (100-155x2.5-7.5 μm), cladome 10-22.5 μm (Fig. 7C); II, short (60-82x2-3 μm), cladome 7.5-12.5 μm (Fig. 7D). Toxas in three categories: I, accalada (82.5-167.5 μm) (Fig. 7E); II, wing-shaped (25-115 μm) (Fig. 7F); III, uncommon oxhorn (25-60 μm) (Fig. 7G). Palmate isochelae with the alae reduced: 10-16 μm (Fig. 7H). The ectosomal skeleton is a dense layer of tylotes (35-60 μm thick). The choanosomal skeleton has a plumoreticulate structure formed by ascending fibre tracts (from 4-6 spicules). Interconnected by secondary paucispicular tracts (1-2 spicules). Cladotylotes are echinating the ascending fibres. Microscleres are dispersed with no special organization.

Etymology. Named “sabulum”, because this species incorporates sand grains in the choanosome.

SCI. MAR., 77(4), December 2013, 677-696. ISSN 0214-8358 doi: 10.3989/scimar.03800.06A
Remarks. Acarnus sabulum n. sp. is a subtidal sponge found in the Gulf of California. The only similar species is A. deweerdtae van Soest et al. 1991. This is an orange-red encrusting sponge from the Caribbean Region. The ectosomal tylotes and choanosomal styles are longer in Acarnus sabulum n. sp. The remaining species of the “tortilis” group have some spicule element of different length than Acarnus sabulum n. sp. (Table 3).

Genus Acheliderma Topsent, 1892

Acheliderma fulvum n. sp.

(Figs 4D and 8, Table 4)

Description. Encrusting sponge from 3-7 cm long and 5-9 mm thick. Surface uneven with spicule projections (300-450 μm high) and fistules (5-10 mm high) evenly distributed. Each fistula with an apical oscule (300-500 μm in diameter). Ostia not observed. Consistency brittle and difficult to tear. Colour in life orange or pale yellow, transparent in preservation (Fig. 4D).

Skeleton. Ectosomal tylotes with microspined or smooth heads: 162.5-270x5-10 μm (Fig. 8A). Choanosomal styles with microspined base: 150-500x5-10 μm (Fig. 8B). Echinating acanthostyles covered with prominent spines: 62.5-125x2.5-5 μm (Fig. 8C). Toxas V-shaped: 40-85 μm (Fig. 8D). Microxeas diamond-shaped: 25-75 μm (Fig. 8E). The ectosomal skeleton is a dense layer of tyloes (30-40 μm thick). The choanosomal skeleton has a plumeous arrangement of ascending primary multispicular fibres made of the styles (50-60 μm thick). Interconnected by secondary pauci-, uni- or bispicular fibres (10-30 μm thick). Acanthostyles are echinating the primary fibres. Sand is found in the choanosome. Microxeas and toxas are dispersed with no special organization.

Etymology. Named “fulvum”, which means yellow in Latin.

Remarks. Acheliderma fulvum n. sp. is a subtidal species found in the Gulf of California. Currently, there are four species assigned to the genus: A. lemniscatum Topsent, 1892 (Mediterranean Sea), A. fistulatum (Dendy, 1896) (South Australia), A. planum (Topsent, 1927) (Azores) and A. lisannae van Soest, Zea and Kielman, 1994 (Caribbean, Colombia). A. lemniscatum Topsent, 1892 is a yellow encrusting sponge with small fistulae on the surface. It has tylotes with microspined heads (250-270 μm), styles with microspined base (420-450 μm), acanthostyles (80-175 μm), toxas (120 μm) and microxeas (60-70 μm). The acanthostyles and toxas are shorter in Acheliderma fulvum n. sp. than in A. lemniscatum. A. planum (Topsent, 1927) is a thinly encrusting sponge. It has tylotes with microspined heads (265-315 μm), acanthostyles (105-455 μm), toxas (125 μm) and microxeas (30-37 μm). The toxas are shorter and the microxeas longer in Acheliderma fulvum n. sp. than in A. planum. A. lisannae van Soest et al. 1994 is a small fistula-shaped sponge described in the Colombian Caribbean. It has tylotes with microspined heads (265-315 μm), acanthostyles (105-455 μm), toxas (125 μm) and microxeas (30-37 μm). The toxas are shorter and the microxeas longer in Acheliderma fulvum n. sp. than in A. planum. A. lisannae van Soest et al. 1994 is a small fistula-shaped sponge described in the Colombian Caribbean. It has tylotes with microspined heads (243-348 μm), styles with microspined base (399-481 μm), acanthostyles (67-101 μm), toxas (101-136 μm) and microxeas in two categories: I) 36-52 μm and II) 19-28 μm. The toxas are longer in A. lisannae than in Acheliderma fulvum n. sp. Another species assigned to this genus in the western Pacific is A. fistulatum (Dendy, 1896). This is a yellow massive sponge with fistulae on the surface. The original
description reported tylostyles (540 μm), acanthostyles (70 μm), toxas (130-300 μm) and microxeas (46 μm). The toxas are shorter in *Acheliderma fulvum* n. sp. than in *A. fistulatum*.

The genus *Acheliderma*: The genus *Acheliderma* was created by Topsent (1892) for a species with raphides, later denominated microxeas. The original description includes choanosomal styles, tylotes, acanthostyles and toxas. Topsent (1927) erected the genus *Astylinifer* for *A. planus*, a species described with acanthostyles in one category. However, there is a difference between the principal choanosomal styles (acanthostyles) with the echinating acanthostyles. Although Topsent (1927) did not recognize these dissimilarities, this is specific of the genus *Acheliderma*. We agree with the synonymy of these two genera proposed by van Soest *et al.* (1994) and Hooper (2002a). The genus *Fusifer* was created by Dendy (1896) for the type species *F. fistulatum* described from the southern coast of Australia. The original description reported tylostyles, acanthostyles, toxas and microxeas. van Soest *et al.* (1994) synonymized this genus with *Acheliderma* because they shared the presence of microxeas in the skeleton. However, if we consider the presence of tylotes a diagnostic feature in the allocation of species of the family Acarnidae, *F. fistulatum* lacks this spicule. van Soest *et al.* (1994)
suggested that the tylotes have been replaced by sand, because of the presence of foreign material embedded in the skeleton. We think that this species has more affinities with the family Microcionidae, because it bears tylotes, acanthostyles, toxas and microxeas. The presence of microxeas has been reported for species belonging to the family Microcionidae such as Clathria (Clathria) microxa Desqueyroux, 1972 and C. (Microciona) microxa (Vacelet and Vasseur, 1971) (this species lacks acanthostyles which is consider a diagnostic feature in the subgenus Microciona sensu Hooper, 1996). The ectosomal skeleton in F. fistulatum is a tangential layer of tylotes. The choanosomal skeleton is formed by ascending primary tracts made of tylotyes and sand grains. Acanthostyles are echinating externally the tracts (Dendy, 1896).

Currently, in the family Microcionidae there are three genera, Clathria (Wilsonella) Carter, 1885,
Echinochalina Thiele, 1903 and Holopsamma Carter, 1885, which incorporate sand grains in the skeleton (Hooper 1996). However, they have some morphological differences from the genus Fusifer. Clathria (Wilsonella) has styles, subtylostyles, acanthostyles, palmate isochelae and toxas. The ectosomal skeleton is made of sand grains and the choanosomal skeleton is reticulate (Hooper 2002b). The Fusifer species has styles, acanthostyles, microxeas and toxas. The ectosomal skeleton is a dense layer of tylostyles and the choanosomal skeleton is made of ascending primary tracts echinating by acanthostyles. The palmate isochelae are lacking in the Fusifer species, but this may be a homoplastic character as in many species of the genus Clathria, in which the presence or absence of palmate isochelae is not a diagnostic feature in the allocation of a specific subgenera (Hooper 1996). The difference between these two genera is the ectosomal skeleton: made of sand grains in Clathria (Wilsonella) and a tangential layer of tylostyles in Fusifer. The genera Echinochalina and Holopsamma have a choanosomal skeleton formed by ascending primary fibres of sand grains, megascleres are monactinal spicules and microscleres include toxas and palmate

Fig. 10. – Megaciella microtoxa (Dickinson, 1945). A, Choanosomal acanthostyle. B, Ectosomal tylostyle with microspined heads. C, D, Echinating acanthostyle. E, Wing-shaped toxas. F, Palmate isochela. Scale: A, 40 μm; B, 60 μm; C, D, E, 15 μm; F, 3.5 μm.
isochelae. No species belonging to these two genera have acanthostyles in the skeleton, while the *Fusifer* species bears acanthostyles and microxeas. Taking into account all these morphological differences, we consider that this genus is not a junior synonym of *Acheliderma*. A further morphological analysis should be undertaken to corroborate the validity of the genus *Fusifer*.

Genus Megaciella Hallman, 1920

Megaciella microtoxa (Dickinson, 1945) (Figs 9A and 10, Table 5)

Material examined. Neotype. LACM # 1936-70, 08/03/1936, North of Partida Island, Gulf of California (MEX), 18 m (28°54'27"N, 113°03.8"W). R/V VELEIRO III. AHF 556-36 (Dickinson, 1945).

Description. Cushion-shaped sponge growing on a flat boulder, size from 5 cm long and 2 cm thick. Surface smooth. Oscula not observed. Ostia circular to oval shaped (100-150 μm long) and evenly distributed. Consistency brittle and difficult to tear. Colour in preservation pale yellow (Fig. 9A).

Skeleton. Choanosomal acanthostyles thick with short spines: 360-540×17.5-25 μm (Fig. 10A). Ectosomal tylotes with microspined heads: 190-250×2.5-5 μm (Fig. 10B). Echinating acanthostyles straight, with prominent spines: 85-215×2.5-7.5 μm (Fig. 10C, D). Toxas wing-shaped with a pronounced curvature: 50-140 μm (Fig. 10E). Palmate isochelae with the alae fused to the shaft: 12.5-15 μm (Fig. 10F). The ectosomal skeleton is a thin layer of tylotes (20-40 μm thick). The choanosomal skeleton is an isotropic reticulum formed by ascending multispecific primary fibres made of the principal acanthostyles (100-125 μm wide). Interconnected by secondary bi- o multispecific fibres (50-75 μm wide). Acanthostyles are echinating the primary fibres. Microscleres are dispersed with no special organization.

Remarks. The holotype of *Megaciella microtoxa* (Dickinson, 1945) was lost. However, we examined specimens of this species collected in the Allan Hancock Pacific Expedition whose spicule measurements match with the original description. Therefore, we propose to establish a neotype for this species. Dickinson (1945) did not report the presence of two categories of acanthostyles which are present in the neotype.

Megaciella toxispinosa n. sp. (Figs 9B and 11, Table 5)

Description. Thinly-encrusting sponge growing on corals and stones, size 6-8 cm long and 5-10 mm thick. Oscula not observed. Surface hispid with ostia circular to oval shaped (600-800 μm long) and spicule projections (250-450 μm height), evenly distributed. Consistency brittle and easy to tear. Colour in life orange, pale in preservation (Fig. 9B).

Skeleton. Ectosomal tylotes straight or curved with microspined heads: 160-215×2.5 μm (Fig. 11A). Ectosomal acanthostyles straight or curved covered with prominent spines: 150-315×2.5-5 μm (Fig. 11B). Echi-

Table 5. – Comparative table data of spicule categories for the *Megaciella* species from the Mexican Pacific. Values are expressed in minimum-average-maximum (μm).* Spicules measurements from the original description.

<table>
<thead>
<tr>
<th>Material Examined</th>
<th>Tyloes (Length×Width)</th>
<th>Acanthostyles (Length×Width)</th>
<th>Toxas (Length)</th>
<th>Palmate isochelae (Length)</th>
<th>Locality and Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megaciella microtoxa</td>
<td>AHF-55636</td>
<td>190-(221.1)-250×2.5-(3.1)-5</td>
<td>L.- 360-(460.2)-540×17.5-(22.5)-25</td>
<td>I.- 85-(150.9)-215×2.5-(4.1)-7.5</td>
<td>50-(98.4)-140 12.5-(12.8)-15 North of Partida Island, Gulf of California. 18 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaciella toxispinosa</td>
<td>AUF-5536*</td>
<td>190×4</td>
<td>333×20</td>
<td>135</td>
<td>15 Angel de la Guarda, Island. Gulf of California. 40 m.</td>
</tr>
<tr>
<td>(Lost)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaciella</td>
<td>MCNM 1.01/692</td>
<td>175-(188.1)-210×2.5-(2.5)-2.5</td>
<td>L.- 185-(221.5)-300×2.5-(3.3)-5</td>
<td>I.- 60-(72.5)-85×2.5-(2.7)-3.5</td>
<td>12.5-(13.2)-15 Isla Isabel, Nayarit. 15 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEB-1484</td>
<td>160-(179.2)-205×2.5-(3.1)-3.75</td>
<td>L.- 150-(213.3)-280×2.5-(6.2)-7.5</td>
<td>II.- 55-(77.9)-105×2.5-(3.1)-3.5</td>
<td>10-(13.3)-15 Cabo Pulmo, Baja Sur. 7 m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaciella</td>
<td>LEB-1975</td>
<td>170-(182.5)-215×2.5-(2.5)-2.5</td>
<td>L.- 205-(237.5)-315×2.5-(13.5)-5</td>
<td>I.- 60-(72.5)-90×2.5-(2.8)-3.5</td>
<td>12.5-(14.3)-17.5 Isla Isabel, Nayarit. 15 m.</td>
</tr>
</tbody>
</table>

SCI. MAR., 77(4), December 2013, 677-696. ISSN 0214-8358 doi: 10.3989/scimar.03800.06A
nating acanthostyles curved or straight, with prominent spines: 55-105×2.5-3.5 μm (Fig. 11C). Toxas in two sizes: I) wing-shaped with a pronounced curvature (35-60 μm) (Fig. 11D); II) oxhorn microspined (3-10 μm) (Fig. 11E). Palmate isochelae in two forms: I, with the alae reduced (12.5-15 μm) (Fig. 11F); II, with the alae fused to the shaft (12.5-17.5 μm) (Fig. 11G). The ectosomal skeleton is a dense layer of tylotes (60-120 μm thick). The choanosomal skeleton is plumose formed by ascending primary multispicular tracts (35-60 μm wide) made of the choanosomal acanthostyles. Acanthostyles II are echinating the primary fibres. Microscleres are dispersed with no special organization.

Etymology. Named “toxispinosa” because the toxas II are microspined.

Remarks. *Megaciella toxispinosa* n. sp. is a subtidal species from the Gulf of California. *Megaciella* species with acanthostyles as choanosomal megascleres are *M. microtoxa* (Dickinson, 1945), *M. incrustans* van Soest, 2009 and *M. tawiensis* (Wilson, 1925) (Table 5). *M. microtoxa* (Dickinson, 1945) is a massive sponge described from the Mexican Pacific. The acanthostyles and toxas are shorter in *Megaciella toxispinosa* n. sp. than in *M. microtoxa* (see above). *Megaciella incrustans* van Soest, 2009 is a red encrusting sponge.
described from Santa Martha (Colombia). It has tylo-
tes with microspined heads (237-309×2-3.5 μm),
acantho-
styles in two categories (I, 129-293×6-10 μm; II, 63-
93×3.5-7 μm) and palmate isochelae (9-14 μm).

The tylo-
tes are shorter in Megaciella toxispina n. sp. than in M.
incrustans. In addition, M. incrustans lacks toxas
while in M. toxispina n. sp. this spicule is present.

Megaciella tawiensis (Wilson, 1925) is a laminate
sponge described from the Sulu archipelago (west-
ern Pacific). It has ectosomal tylo-
tes (150-280 μm),
acantho-
styles (280-350 μm), toxas (150-350 μm) and
palmate isochelae (14-20 μm). The toxas and palmal
isochelae are longer in M. tawiensis than in Megaciella
toxispina n. sp. Recently, Lee et al. (2007) described
an unidentified Megaciella species from deep waters of
California. This is a thick encrusting sponge, with
acantho-
sty les in three categories (I, 145-339×12-17
μm; II, 79-145×5-13 μm; III, 321-412×19-24 μm),

ticits and microspined heads (64-280×4-
7 μm), palmate isochelae (16-25 μm) and toxas wing-
shaped in two categories (I, with a high arch 7-193 μm;
II, with a low arch, 8-13 μm). M. toxispina n. sp. has
two categories of acantho-
styles shorter than those from
California (Table 5).

The genus Megaciella: Hallman (1920) created the
genus Megaciella for Megaciella spinosa (Ridley and
Dendy, 1886). This species has choanosomal styles,

tylo-
styles with microspined heads, palmate isochelae and non-spinolus toxas. De Laubenfels (1936) created the genus Myxichela for Lissodendoryx
tawiensis Wilson, 1925. This species bears ectosomal

tylo-
styles, choanosomal acantho-
styles, palmate isochelae and toxas. Hooper (2002a) synonymized the genus Megaciella with Myxichela because of the presence of

tylo-
cectosomal tylo-
styles and choanosomal monactinal spic-
ules. According to van Soest et al. (2012), there are
currently 12 species assigned to this genus. Based on the
literature, there are species with styles as choano-

Table 6. – Comparative table of spicule categories of Iophon indentatum Wilson, 1904 and Iophon lamella Wilson, 1904. Values are expressed in minimum-average-maximum (μm). a Spicules measurements from the original description.

<table>
<thead>
<tr>
<th>Species</th>
<th>Acanthostyles (lengthwidth)</th>
<th>Tylotes (lengthwidth)</th>
<th>Palmate isochelae (length)</th>
<th>Bipocilla (length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. indentatum</td>
<td>270-(296.3)-315×5-(10.5)-15</td>
<td>230-(258.8)-280×5-(15.9)-7.5</td>
<td>10-(15.3)-17.5</td>
<td>10-(11.4)-12.5</td>
</tr>
<tr>
<td>I. indentatum Wilson, 1904*</td>
<td>220×14-16</td>
<td>220-8</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>I. indentatum sensu Desqueyroux-Faúndez and van Soest, 1996*</td>
<td>199-234×16</td>
<td>207-220×7-8</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Iophon lamella sensu Desqueyroux-Faúndez and van Soest, 1996*</td>
<td>210-250×10-16</td>
<td>202-240×6-8</td>
<td>I.-10-16 II.-20-29</td>
<td>8-16</td>
</tr>
<tr>
<td>I. chelifer var. californiana de Laubenfels, 1932*</td>
<td>234-260×12</td>
<td>200-241×7-8</td>
<td>I.-12-23 II.-27-35</td>
<td>12-20</td>
</tr>
<tr>
<td>Bartonella melanokhenia de Laubenfels, 1928</td>
<td>270-304×16-20</td>
<td>222-253×7-8</td>
<td>I.-12-16 II.-20-25</td>
<td>12-16</td>
</tr>
</tbody>
</table>
skeleton is a tangential layer of tylotes (20-30 μm thick). The choanosomal skeleton is an isotropic reticulum formed by ascendant multispicular primary fibres (80-150 μm wide), interconnected by multispicular secondary fibres (20-45 μm wide). The organization forms quadrangular meshes (20-35 μm wide). The microscleres are dispersed with no special organization.

Remarks. *Iophon indentatum* Wilson, 1904 was originally described from the continental shelf of the Galápagos Islands. Dickinson (1945) reported this species from the Gulf of California. Specimens from the Mexican Pacific have the tylotes and the acanthostyles longer than those described by Wilson (1904) (Table 6). Dickinson (1945) considered that *I. indentatum* and *I. lamella* Wilson, 1904 were the same species, because they have similar morphological features and were described in the same geographical zone (Galápagos Islands). Desqueyroux-Faúndez and van Soest (1996) reviewed the type material, as well as new material collected from South America, and considered that they belonged to the same species. The authors included the records of *Iophon chelifer var. californiana* de Laubenfels, 1930 (California) and *Burtonella melanokhennia* de Laubenfels, 1928 (Puget Sound, USA). van Soest *et al.* (2012) suggested that the records from California (de Laubenfels, 1928, 1930) are synonyms of *I. lamella* and consider that *I. indentatum* is a valid species. The main differences between these two species are the palmate anisochelae categories. *Iophon lamella* Wilson, 1904 has two categories of palmate anisochelae (I, 20-35 μm; II, 10-17.5 μm) and *Iophon indentatum* Wilson, 1904 has one category (10-17.5 μm).

Iophon bipocillum n. sp.
(Figs 9D and 13, Table 7)

Material examined. Holotype, MCNM 1.01/693, 09/04/2011, 20 Station Talud XIV (Gulf of California, MEX), 410 m (28º46′29″N 112º45′40″W). 2056-LEB-ICML-UNAM, 09/04/2011, 20 Station Talud XIV (Gulf of California, MEX), 410 m (28º46′29″N 112º45′40″W). 2057-LEB-ICML-UNAM, 09/04/2011, Talud XIV 14 Station (Gulf of California, MEX), 410 m (28º46′29″N 112º45′40″W). 2058-LEB-ICML-UNAM, 09/04/2011, 20 Station Talud XIV (Gulf of California, MEX), 410 m (28º36′14″N 112º28′03″W).

Description. Massive sponge 10-30 cm long and 3-5 cm thick. Surface smooth. Oscula circular to oval shaped (500-1200 μm long) and ostia elliptical (50-100 μm long) and evenly distributed. Consistency elastic and easy to tear. Colour in life dark-brown, in preservation pale (Fig. 9D).

Skeleton. Ectosomal tylotes with microspined heads: 205-310×5-7.5 μm (Fig. 13A). Choanosomal styles straight or slightly curved: 320-425×15-22.5 μm (Fig. 13B). Bipocilla multidentate: 12.5-20 μm (Fig. 13C, D). The ectosomal skeleton is a dense layer of tylotes (10-20 μm thick). The choanosomal skeleton is an isotropic reticulum formed by ascending multispicular primary fibres (100-150 μm wide), interconnected by multispicular secondary fibres (45-70 μm wide). The organization forms quadrangular meshes (150-300 μm wide). Bipocilla are dispersed with no special organization.

Etymology. Named “bipocillum” because it is the only species bearing exclusively bipocilla as microscleres.

Remarks. *Iophon bipocillum* n. sp. is a deep sea species from the Gulf of California. It has styles, tylotes and bipocilla. *I. bipocillum* n. sp. is the only species of the genus bearing bipocilla as microscleres. *Iophon* species are characterized by having bipocilla and palmate anisochelae as microscleres. There are three species bearing exclusively palmate anisochelae: *I.
Desqueyroux-Faúndez and van Soest, 1996 (South Pacific), *I. pictoni* Goodwin et al., 2011 (southwest Atlantic) and *I. abnormale* Ridley and Dendy, 1886 (Indian Ocean). *Iophon* species bear as choanosomal megascleres acanthostyles or styles. In the eastern Pacific there are only two species with styles. *Iophon timidum* Desqueyroux-Faúndez and van Soest, 1996 is a massive brown sponge, described from the coast of Chile at 25 m depth. It has styles (186-259×3-6 μm), tylotes with microspined heads (150-250×3-6 μm) and palmate anisochelae in two sizes (I, 10-16 μm; II, 5-10 μm). The styles are longer in *I. bipocillum* n. sp. than *I. timidum*.

Iophon tubiforme Desqueyroux-Faúndez and van Soest, 1996 is a brown tubular-shaped sponge described from the Chilean Coast. This species has choanosomal strongyles (163-272×5-13 μm), tylotes with microspined heads (141-243×3-10 μm), palmate anisochelae (8-17 μm) and bipocilla (6-19 μm). The main differences between these two species are the length and morphology of the choanosomal megascleres: strongyles with a smooth base in *I. tubiforme* shorter than the styles of *Iophon bipocillum* n. sp.

Discussion

Species belonging to the family Acarnidae have been reported in all the oceans worldwide (Hooper 2002a). In the Mexican Pacific, there were only three species known (Dickinson 1945), but after this study the number of species has increased to ten. Currently, there are 33 species of the family Acarnidae from the eastern Pacific region: 5 from Alaska (Stone et al. 2011), 8 from the Pacific Coast of the USA (Lee et al. 2007), 10 from the Mexican Pacific (including the Gulf of California) and 10 from South America (Desqueyroux-Faúndez and van Soest 1996).

Acarnus erithacus de Laubenfels, 1927 is found in the Gulf of California and on the Pacific coast of the USA. *Acarnus peruanus* van Soest et al. 1991 was originally described from the Pacific coast of Peru, and after this study its distributional range has now extended to include the Gulf of California. *Iophon indentatum* Wilson, 1904 is found in the southeast Pacific and in the Gulf of California. *Iophon bipocillum* n. sp. is a deep sea species from the Gulf of California. *Megaclonia microtoxa* (Dickinson, 1945), *Acarnus michoacensis* n. sp., *Acarnus oaxaquensis* n. sp., *Acarnus sabulum* n. sp., *Acheliderma fulvum* n. sp. and *Megaclonia toxispinosa* n. sp. are subtidal species found in specific localities from the Mexican Pacific.

Five of the ten species described in this study belong to the genus *Acarnus*. Three of them are new to science. There is a high diversity of species belonging to this genus in the Mexican Pacific. *Acarnus* is characterized by the presence of the cladotylote spicule, which is considered a synapomorphic feature in the family Acarnidae (Hooper 2002a). According to van Soest et al. (1991) the presence of this spicule is employed for the definition of the genus. However, there are species with a hymedesmoid, dendritic and isotropic skeleton and with and without echinating acanthostyles (see van Soest et al. 1991).

Iophon bipocillum n. sp. is by far the only species described worldwide bearing exclusively bipocilla as microscleres. The bipocillae studied with the help of the SEM recognized that the upper part bears two
structures like clove leaves (Fig. 13D). The morphology of this microsclere has been described before (see Boury-Esnault and Rützler 1997). Recently, Goodwin et al. (2012) described a new species of the genus Iopphon from South Georgia (I. iusvikensis). The bipocillae shown in this species is most likely an anchorate-multidentate chela instead of a real bipocillae.

The ecytosomal spicule morphology is a diagnostic feature to assign species in the suborder Microcionina (Hajdu et al. 1994). Species with diactinal spicules are assigned in the family and with monactinal spicules in the family Microcionidae (Hooper, 2002a). Recently, de Barros et al. (2013) described a new species of the genus Clathria from the coast of Brazil (C. (Clathria) nicoleae). This species has ecitosomal tylos-trongyles with microspined heads, choanosomal subtylostyles with a smooth or microspined base, echinating acanthostyles, toxas and palmate isochelae. We think that this species does not belong to the family Microcionidae, because it has ecytosomal diactinal spicules. Based on the recent description, this species may move to the genus Megaciella (family, Acarnidae). There are also some species assigned to the genus Clathria with ecytosomal diactinal spicules such as C. (Clathria) basilana Levi, 1961 and C. (Clathria) chelifer (Hentschel, 1911) (see Hooper 1996). They do not belong to the family Microcionidae and need to be transferred to a specific genus of the family Acarnidae. This is the first taxonomic contribution of a family belonging to the suborder Microcionina from the Mexican Pacific.

ACKNOWLEDGEMENTS

We thank Regina Wetzer from the Natural History Museum of Los Angeles County for inviting the first author to review the Allan Hancock Sponge Collection; Kathy Omura, Emma Freeman and Kirk Fitzhugh for their help; Yolanda Hornelas (ICML) and Ing. Israel Gradilla Martinez (CNCyN-UNAM, Ensenada) for the SEM photographs. Clara Ramirez Jaregui (ICML) helped with the literature. We thank SAGARPA for the permit number DGOPA.00978.120209.0457 conferred for the collection of the samples. This research was partially supported by the project SEP-CONACyT (102239). We thank the Consejo Tecnico de Investigacion Cientifica, UNAM, for providing time to use the R/V El Puma as well as scientific staff and crew for their support in sampling operations during the Talud XIV campaign. The constructive comments of M.J. Uriz and two anonymous reviewers improve this manuscript.

REFERENCES

Received December 17, 2012. Accepted October 7, 2013.
Published online November 6, 2013.